Advertisement

A Framework for Modeling, Computing and Presenting Time-Aware Recommendations

  • Kostas Stefanidis
  • Eirini Ntoutsi
  • Mihalis Petropoulos
  • Kjetil Nørvåg
  • Hans-Peter Kriegel
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8220)

Abstract

Lately, recommendation systems have received significant attention. Most existing approaches though, recommend items of potential interest to users by completely ignoring the temporal aspects of ratings. In this paper, we argue that time-aware recommendations need to be pushed in the foreground. We introduce an extensive model for time-aware recommendations from two perspectives. From a fresh-based perspective, we propose using different aging schemes for decreasing the effect of historical ratings and increasing the influence of fresh and novel ratings. From a context-based perspective, we focus on providing different suggestions under different temporal specifications. To facilitate user browsing, we propose an effective presentation layer for time-aware recommendations based on user preferences and summaries for the suggested items. Our experiments with real movies ratings show that time plays an important role in the recommendation process.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Movielens data sets, http://www.grouplens.org/node/12 (visited on November 2011)
  2. 2.
    Adomavicius, G., Kwon, Y.: New recommendation techniques for multicriteria rating systems. IEEE Intelligent Systems 22(3), 48–55 (2007)CrossRefGoogle Scholar
  3. 3.
    Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. Inf. Syst. 23(1), 103–145 (2005)CrossRefGoogle Scholar
  4. 4.
    Aggarwal, C.C. (ed.): Data Streams – Models and Algorithms. Springer (2007)Google Scholar
  5. 5.
    Aggarwal, C.C., Han, J., Wang, J., Yu, P.: A framework for clustering evolving data streams. In: VLDB (2003)Google Scholar
  6. 6.
    Agrawal, R., Wimmers, E.L.: A framework for expressing and combining preferences. In: SIGMOD Conference, pp. 297–306 (2000)Google Scholar
  7. 7.
    Amer-Yahia, S., Roy, S.B., Chawla, A., Das, G., Yu, C.: Group recommendation: Semantics and efficiency. PVLDB 2(1), 754–765 (2009)Google Scholar
  8. 8.
    Balabanovic, M., Shoham, Y.: Content-based, collaborative recommendation. Commun. ACM 40(3), 66–72 (1997)CrossRefGoogle Scholar
  9. 9.
    Balog, K., Bogers, T., Azzopardi, L., de Rijke, M., van den Bosch, A.: Broad expertise retrieval in sparse data environments. In: SIGIR, pp. 551–558 (2007)Google Scholar
  10. 10.
    Baltrunas, L., Amatriain, X.: Towards time-dependant recommendation based on implicit feedback. In: CARS, pp. 1–5 (2009)Google Scholar
  11. 11.
    Breese, J.S., Heckerman, D., Kadie, C.M.: Empirical analysis of predictive algorithms for collaborative filtering. In: UAI, pp. 43–52 (1998)Google Scholar
  12. 12.
    Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving data stream with noise. In: SDM 2006 (2006)Google Scholar
  13. 13.
    Chomicki, J.: Preference formulas in relational queries. ACM Trans. Database Syst. 28(4), 427–466 (2003)CrossRefGoogle Scholar
  14. 14.
    Dayal, U., Wuu, G.T.J.: A uniform approach to processing temporal queries. In: VLDB, pp. 407–418 (1992)Google Scholar
  15. 15.
    Ding, Y., Li, X.: Time weight collaborative filtering. In: CIKM, pp. 485–492 (2005)Google Scholar
  16. 16.
    Fakas, G.J.: A novel keyword search paradigm in relational databases: Object summaries. Data Knowl. Eng. 70(2), 208–229 (2011)CrossRefGoogle Scholar
  17. 17.
    Fakas, G.J., Cai, Z., Mamoulis, N.: Size-l object summaries for relational keyword search. PVLDB 5(3), 229–240 (2011)Google Scholar
  18. 18.
    Gama, J.: Knowledge Discovery from Data Streams. CRC Press (2010)Google Scholar
  19. 19.
    Georgiadis, P., Kapantaidakis, I., Christophides, V., Nguer, E.M., Spyratos, N.: Efficient rewriting algorithms for preference queries. In: ICDE, pp. 1101–1110 (2008)Google Scholar
  20. 20.
    Kießling, W.: Foundations of preferences in database systems. In: VLDB, pp. 311–322 (2002)Google Scholar
  21. 21.
    Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R., Riedl, J.: Grouplens: Applying collaborative filtering to usenet news. Commun. ACM 40(3), 77–87 (1997)CrossRefGoogle Scholar
  22. 22.
    Koutrika, G., Ioannidis, Y.E.: Personalizing queries based on networks of composite preferences. ACM Trans. Database Syst. 35(2) (2010)Google Scholar
  23. 23.
    Koutrika, G., Zadeh, Z.M., Garcia-Molina, H.: Data clouds: summarizing keyword search results over structured data. In: EDBT, pp. 391–402 (2009)Google Scholar
  24. 24.
    Kuo, B.Y.-L., Hentrich, T., Good, B.M., Wilkinson, M.D.: Tag clouds for summarizing web search results. In: WWW, pp. 1203–1204 (2007)Google Scholar
  25. 25.
    Melville, P., Sindhwani, V.: Recommender systems. In: Encyclopedia of Machine Learning, pp. 829–838 (2010)Google Scholar
  26. 26.
    Miele, A., Quintarelli, E., Tanca, L.: A methodology for preference-based personalization of contextual data. In: EDBT, pp. 287–298 (2009)Google Scholar
  27. 27.
    Mobasher, B., Cooley, R., Srivastava, J.: Automatic personalization based on web usage mining. Commun. ACM, 142–151 (2000)Google Scholar
  28. 28.
    Mooney, R.J., Roy, L.: Content-based book recommending using learning for text categorization. In: ACM DL, pp. 195–204 (2000)Google Scholar
  29. 29.
    Nong, Y.: The Handbook of Data Mining. Lawrence Erlbaum Associates, Mahwah (2003)Google Scholar
  30. 30.
    Ntoutsi, E., Stefanidis, K., Nørvåg, K., Kriegel, H.-P.: Fast group recommendations by applying user clustering. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012 Main Conference 2012. LNCS, vol. 7532, pp. 126–140. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  31. 31.
    O’Connor, M., Cosley, D., Konstan, J.A., Riedl, J.: Polylens: A recommender system for groups of user. In: ECSCW, pp. 199–218 (2001)Google Scholar
  32. 32.
    Palmisano, C., Tuzhilin, A., Gorgoglione, M.: Using context to improve predictive modeling of customers in personalization applications. IEEE Trans. Knowl. Data Eng. 20(11), 1535–1549 (2008)CrossRefGoogle Scholar
  33. 33.
    Pazzani, M.J., Billsus, D.: Learning and revising user profiles: The identification of interesting web sites. Machine Learning 27(3), 313–331 (1997)CrossRefGoogle Scholar
  34. 34.
    Ricci, F., Rokach, L., Shapira, B., Kantor, P.B.: Recommender Systems Handbook. Springer, New York, Inc. (2010)Google Scholar
  35. 35.
    Stefanidis, K., Pitoura, E., Vassiliadis, P.: Managing contextual preferences. Inf. Syst. 36(8), 1158–1180 (2011)CrossRefGoogle Scholar
  36. 36.
    Xiang, L., Yang, Q.: Time-dependent models in collaborative filtering based recommender system. In: Web Intelligence, pp. 450–457 (2009)Google Scholar
  37. 37.
    Xiang, L., Yuan, Q., Zhao, S., Chen, L., Zhang, X., Yang, Q., Sun, J.: Temporal recommendation on graphs via long- and short-term preference fusion. In: KDD, pp. 723–732 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kostas Stefanidis
    • 1
    • 3
  • Eirini Ntoutsi
    • 2
  • Mihalis Petropoulos
    • 2
  • Kjetil Nørvåg
    • 3
  • Hans-Peter Kriegel
    • 2
  1. 1.Institute of Computer Science, FORTHHeraklionGreece
  2. 2.Institute for InformaticsLudwig Maximilian UniversityMunichGermany
  3. 3.Department of Computer and Information ScienceNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations