A Declarative Approach to View Selection Modeling

  • Imene Mami
  • Zohra Bellahsene
  • Remi Coletta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8220)


View selection is important in many data-intensive systems e.g., commercial database and data warehousing systems. Given a database (or a data warehouse) schema and a query workload, view selection is to choose an appropriate set of views to be materialized that optimizes the total query cost, given a limited amount of resource, e.g., storage space and total view maintenance cost. The view selection problem is known to be a NP-complete problem. In this paper, we propose a declarative approach that involves a constraint programming technique which is known to be efficient for the resolution of NP-complete problems. The originality of our approach is that it provides a clear separation between formulation and resolution of the problem. For this purpose, the view selection problem is modeled as a constraint satisfaction problem in an easy and declarative way. Then, its resolution is performed automatically by the constraint solver. Furthermore, our approach is flexible and extensible, in that it can easily model and handle new constraints and new heuristic search strategies to reduce the solution space. The performance results show that our approach outperforms the genetic algorithm which is known to provide the best trade-off between quality of solutions in terms of cost saving and execution time.


Database design modeling and management query processing and optimization view selection materialized views 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Choco, open-source software for constraint satisfaction problems,
  2. 2.
    The TPC benchmark H (TPC-H),
  3. 3.
    Agrawal, S., Chaudhuri, S., Narasayya, V.R.: Automated selection of materialized views and indexes in sql databases. In: VLDB, Cairo, Egypt, pp. 496–505 (2000)Google Scholar
  4. 4.
    Baril, X., Bellahsene, Z.: Selection of materialized views: A cost-based approach. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 665–680. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Chaves, L.W.F., Buchmann, E., Hueske, F., Böhm, K.: Towards materialized view selection for distributed databases. In: Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database Technology, EDBT 2009, pp. 1088–1099. ACM, New York (2009)CrossRefGoogle Scholar
  6. 6.
    Du, W., Krishnamurthy, R., Shan, M.C.: Query optimization in heterogeneous dbms. In: Proc. of VLDB. Vancouver, British Columbia, Canada, pp. 277–291 (1992)Google Scholar
  7. 7.
    Gupta, H.: Selection of views to materialize in a data warehouse. In: ICDT, Delphi, Greece, pp. 98–112 (1997)Google Scholar
  8. 8.
    Gupta, H., Mumick, I.S.: Selection of views to materialize under a maintenance cost constraint. In: ICDT, Jerusalem, Israel, pp. 453–470 (1999)Google Scholar
  9. 9.
    Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes efficiently. In: SIGMOD Conference, Montreal, Canada, pp. 205–216 (1996)Google Scholar
  10. 10.
    Kalnis, P., Mamoulis, N., Papadias, D.: View selection using randomized search. Data Knowl. Eng. 42(1), 89–111 (2002)CrossRefzbMATHGoogle Scholar
  11. 11.
    Karloff, H.J., Mihail, M.: On the complexity of the view-selection problem. In: PODS, Philadelphia, Pennsylvania, USA, pp. 167–173 (1999)Google Scholar
  12. 12.
    Vijay Kumar, T.V., Dubey, G., Singh, A.: Frequent queries selection for view materialization. In: Meghanathan, N., Nagamalai, D., Chaki, N. (eds.) Advances in Computing & Inform. Technology. AISC, vol. 177, pp. 521–530. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Vijay Kumar, T.V., Kumar, S.: Materialized view selection using genetic algorithm. In: IC3, pp. 225–237 (2012)Google Scholar
  14. 14.
    Vijay Kumar, T.V., Kumar, S.: Materialized view selection using iterative improvement. In: Meghanathan, N., Nagamalai, D., Chaki, N. (eds.) Advances in Computing & Inf. Technology. AISC, vol. 178, pp. 205–213. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Kumar, V.: Algorithms for constraint-satisfaction problems: A survey. AI Magazine 13(1), 32–44 (1992)Google Scholar
  16. 16.
    Labio, W., Quass, D., Adelberg, B.: Physical database design for data warehouses. In: Proceedings of the Thirteenth International Conference on Data Engineering, ICDE 1997, pp. 277–288. IEEE Computer Society, Washington, DC (1997)Google Scholar
  17. 17.
    Lecoutre, C., Roussel, O., van Dongen, M.R.C.: Promoting robust black-box solvers through competitions. Constraints 15(3), 317–326 (2010)CrossRefzbMATHGoogle Scholar
  18. 18.
    Lee, M., Hammer, J.: Speeding up materialized view selection in data warehouses using a randomized algorithm. Int. J. Cooperative Inf. Syst. 10(3), 327–353 (2001)CrossRefGoogle Scholar
  19. 19.
    Ligoudistianos, S., Theodoratos, D., Sellis, T.K.: Experimental evaluation of data warehouse configuration algorithms. In: DEXA Workshop, Vienna, Austria, pp. 218–223 (1998)Google Scholar
  20. 20.
    Mackert, L.F., Lohman, G.M.: R* optimizer validation and performance evaluation for local queries. In: Proceedings of the 1986 ACM SIGMOD International Conference on Management of Data, SIGMOD 1986, pp. 84–95. ACM, New York (1986)CrossRefGoogle Scholar
  21. 21.
    Mami, I., Bellahsene, Z.: A survey of view selection methods. SIGMOD Record 41(1), 20–29 (2012)CrossRefGoogle Scholar
  22. 22.
    Mami, I., Bellahsene, Z., Coletta, R.: View selection under multiple resource constraints in a distributed context. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.) DEXA 2012, Part II. LNCS, vol. 7447, pp. 281–296. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Mami, I., Coletta, R., Bellahsene, Z.: Modeling view selection as a constraint satisfaction problem. In: Hameurlain, A., Liddle, S.W., Schewe, K.-D., Zhou, X. (eds.) DEXA 2011, Part II. LNCS, vol. 6861, pp. 396–410. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Mistry, H., Roy, P., Sudarshan, S., Ramamritham, K.: Materialized view selection and maintenance using multi-query optimization. In: SIGMOD Conference, Santa Barbara, California, USA, pp. 307–318 (2001)Google Scholar
  25. 25.
    De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for itemset mining. In: KDD, Las Vegas, USA, pp. 204–212 (2008)Google Scholar
  26. 26.
    Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming (Foundations of Artificial Intelligence). Elsevier Science Inc., New York (2006)Google Scholar
  27. 27.
    Roussopoulos, N.: The logical access path schema of a database. IEEE Trans. Software Eng. 8(6), 563–573 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Roy, P., Seshadri, S., Sudarshan, S., Bhobe, S.: Efficient and extensible algorithms for multi query optimization. In: SIGMOD Conference, Dallas, Texas, USA, pp. 249–260 (2000)Google Scholar
  29. 29.
    Sohn, J.-S., Yang, J.-H., Chung, I.-J.: Improved view selection algorithm in data warehouse. In: Kim, K.J., Chung, K.-Y. (eds.) IT Convergence and Security 2012. LNEE, vol. 215, pp. 921–928. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  30. 30.
    Theodoratos, D., Ligoudistianos, S., Sellis, T.K.: View selection for designing the global data warehouse. Data Knowl. Eng. 39(3), 219–240 (2001)CrossRefzbMATHGoogle Scholar
  31. 31.
    Theodoratos, D., Sellis, T.K.: Data warehouse configuration. In: VLDB, Athens, Greece, pp. 126–135 (1997)Google Scholar
  32. 32.
    Yang, J., Karlapalem, K., Li, Q.: Algorithms for materialized view design in data warehousing environment. In: VLDB, Athens, Greece, pp. 136–145 (1997)Google Scholar
  33. 33.
    Zhang, C., Yang, J.: Genetic algorithm for materialized view selection in data warehouse environments. In: Mohania, M., Tjoa, A.M. (eds.) DaWaK 1999. LNCS, vol. 1676, pp. 116–125. Springer, Heidelberg (1999)Google Scholar
  34. 34.
    Zhang, C., Yao, X., Yang, J.: An evolutionary approach to materialized views selection in a data warehouse environment. IEEE Transactions on Systems, Man, and Cybernetics, Part C 31(3), 282–294 (2001)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Imene Mami
    • 1
  • Zohra Bellahsene
    • 1
  • Remi Coletta
    • 1
  1. 1.LIRMMUniversity Montpellier 2France

Personalised recommendations