Skip to main content

Arrestin Regulation of Small GTPases

  • Chapter
  • First Online:
Arrestins - Pharmacology and Therapeutic Potential

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 219))

Abstract

The regulation of small GTPases by arrestins is a relatively new way by which arrestin can exert influence over cell signalling cascades, hence, molecular interactions and specific binding partners are still being discovered. A pathway showcasing the regulation of GTPase activity by β-arrestin was first elucidated in 2001. Since this original study, growing evidence has emerged for arrestin modulation of GTPase activity through direct interactions and also via the scaffolding of GTPase regulatory proteins. Given the importance of small GTPases in a variety of essential cellular functions, pharmacological manipulation of this pathway may represent an area with therapeutic potential, particularly with respect to cancer pathology and cardiac hypertrophy.

The regulation of small GTPases by arrestins is a relatively new way by which arrestin can exert influence over cell signalling cascades, hence, molecular interactions and specific binding partners are still being discovered. A pathway showcasing the regulation of GTPase activity by β-arrestin was first elucidated in 2001. Since this original study, growing evidence has emerged for arrestin modulation of GTPase activity through direct interactions and also via the scaffolding of GTPase regulatory proteins. Given the importance of small GTPases in a variety of essential cellular functions, pharmacological manipulation of this pathway may represent an area with therapeutic potential, particularly with respect to cancer pathology and cardiac hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anthony DF, Sin YY et al (2011) beta-Arrestin 1 inhibits the GTPase-activating protein function of ARHGAP21, promoting activation of RhoA following angiotensin II type 1A receptor stimulation. Mol Cell Biol 31(5):1066–1075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aoki H, Izumo S et al (1998) Angiotensin II activates RhoA in cardiac myocytes: a critical role of RhoA in angiotensin II-induced premyofibril formation. Circ Res 82(6):666–676

    Article  CAS  PubMed  Google Scholar 

  • Barnes WG, Reiter E et al (2005) beta-Arrestin 1 and Galphaq/11 coordinately activate RhoA and stress fiber formation following receptor stimulation. J Biol Chem 280(9):8041–8050

    Article  CAS  PubMed  Google Scholar 

  • Berthouze-Duquesnes M, Lucas A et al (2013) Specific interactions between Epac1, beta-arrestin2 and PDE4D5 regulate beta-adrenergic receptor subtype differential effects on cardiac hypertrophic signaling. Cell Signal 25(4):970–980

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya M, Anborgh PH et al (2002) Beta-arrestins regulate a Ral-GDS Ral effector pathway that mediates cytoskeletal reorganization. Nat Cell Biol 4(8):547–555

    CAS  PubMed  Google Scholar 

  • Bolger GB, Baillie GS et al (2006) Scanning peptide array analyses identify overlapping binding sites for the signalling scaffold proteins, beta-arrestin and RACK1, in cAMP-specific phosphodiesterase PDE4D5. Biochem J 398(1):23–36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bourne HR, Sanders DA et al (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349(6305):117–127

    Article  CAS  PubMed  Google Scholar 

  • Chien UH, Lai M et al (1979) Heteroduplex analysis of the sequence relationships between the genomes of Kirsten and Harvey sarcoma viruses, their respective parental murine leukemia viruses, and the rat endogenous 30S RNA. J Virol 31(3):752–760

    CAS  PubMed Central  PubMed  Google Scholar 

  • Claing A, Chen W et al (2001) beta-Arrestin-mediated ADP-ribosylation factor 6 activation and beta 2-adrenergic receptor endocytosis. J Biol Chem 276(45):42509–42513

    Article  CAS  PubMed  Google Scholar 

  • Gong FY, Deng JY et al (2008) Mek and p38 MAPK-dependant pathways are involoved in the positive effect of interleukin-6 on human growth hormone gene expression in rat MtT/S somatotroph cells. Chin Med Sci J 23(2):73–80

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi A, Demo SD et al (1994) ralGDS family members interact with the effector loop of ras p21. Mol Cell Biol 14(11):7483–7491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li TT, Alemayehu M et al (2009a) Beta-arrestin/Ral signaling regulates lysophosphatidic acid-mediated migration and invasion of human breast tumor cells. Mol Cancer Res 7(7):1064–1077

    Article  CAS  PubMed  Google Scholar 

  • Li X, MacLeod R et al (2009b) A scanning peptide array approach uncovers association sites within the JNK/beta arrestin signalling complex. FEBS Lett 583(20):3310–3316

    Article  CAS  PubMed  Google Scholar 

  • Meng D, Lynch MJ et al (2009) MEK1 binds directly to betaarrestin1, influencing both its phosphorylation by ERK and the timing of its isoprenaline-stimulated internalization. J Biol Chem 284(17):11425–11435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mythreye K, Blobe GC (2009) The type III TGF-beta receptor regulates epithelial and cancer cell migration through beta-arrestin2-mediated activation of Cdc42. Proc Natl Acad Sci USA 106(20):8221–8226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parada LF, Tabin CJ et al (1982) Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature 297(5866):474–478

    Article  CAS  PubMed  Google Scholar 

  • Reis K, Fransson A et al (2009) The Miro GTPases: at the heart of the mitochondrial transport machinery. FEBS Lett 583(9):1391–1398

    Article  CAS  PubMed  Google Scholar 

  • Santos E, Tronick SR et al (1982) T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of BALB- and Harvey-MSV transforming genes. Nature 298(5872):343–347

    Article  CAS  PubMed  Google Scholar 

  • Sin YY, Edwards HV et al (2011) Disruption of the cyclic AMP phosphodiesterase-4 (PDE4)-HSP20 complex attenuates the beta-agonist induced hypertrophic response in cardiac myocytes. J Mol Cell Cardiol 50(5):872–883

    Article  CAS  PubMed  Google Scholar 

  • Soh UJ, Trejo J (2011) Activated protein C promotes protease-activated receptor-1 cytoprotective signaling through beta-arrestin and dishevelled-2 scaffolds. Proc Natl Acad Sci USA 108(50):E1372–E1380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takai Y, Sasaki T et al (2001) Small GTP-binding proteins. Physiol Rev 81(1):153–208

    CAS  PubMed  Google Scholar 

  • Vlieghe P, Lisowski V et al (2010) Synthetic therapeutic peptides: science and market. Drug Discov Today 15(1–2):40–56

    Article  CAS  PubMed  Google Scholar 

  • Xiao K, McClatchy DB et al (2007) Functional specialization of beta-arrestin interactions revealed by proteomic analysis. Proc Natl Acad Sci USA 104(29):12011–12016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George S. Baillie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cameron, R.T., Baillie, G.S. (2014). Arrestin Regulation of Small GTPases. In: Gurevich, V. (eds) Arrestins - Pharmacology and Therapeutic Potential. Handbook of Experimental Pharmacology, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41199-1_19

Download citation

Publish with us

Policies and ethics