Skip to main content

Arrestins in Apoptosis

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 219))

Abstract

Programmed cell death (apoptosis) is a coordinated set of events eventually leading to the massive activation of specialized proteases (caspases) that cleave numerous substrates, orchestrating fairly uniform biochemical changes than culminate in cellular suicide. Apoptosis can be triggered by a variety of stimuli, from external signals or growth factor withdrawal to intracellular conditions, such as DNA damage or ER stress. Arrestins regulate many signaling cascades involved in life-or-death decisions in the cell, so it is hardly surprising that numerous reports document the effects of ubiquitous nonvisual arrestins on apoptosis under various conditions. Although these findings hardly constitute a coherent picture, with the same arrestin subtypes, sometimes via the same signaling pathways, reported to promote or inhibit cell death, this might reflect real differences in pro- and antiapoptotic signaling in different cells under a variety of conditions. Recent finding suggests that one of the nonvisual subtypes, arrestin-2, is specifically cleaved by caspases. Generated fragment actively participates in the core mechanism of apoptosis: it assists another product of caspase activity, tBID, in releasing cytochrome C from mitochondria. This is the point of no return in committing vertebrate cells to death, and the aspartate where caspases cleave arrestin-2 is evolutionary conserved in vertebrate, but not in invertebrate arrestins. In contrast to wild-type arrestin-2, its caspase-resistant mutant does not facilitate cell death.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Different systems of arrestin names are used in the field and in this book. We use systematic names of arrestin proteins: arrestin-1 (historic names S-antigen, 48-kDa protein, visual or rod arrestin), arrestin-2 (β-arrestin or β-arrestin-1), arrestin-3 (β-arrestin-2 or hTHY-ARRX), and arrestin-4 (cone or X-arrestin; for unclear reasons its gene is called “arrestin-3” in the HUGO database).

References

  • Ahn S, Kim J, Hara MR, Ren XR, Lefkowitz RJ (2009) {beta}-Arrestin-2 mediates anti-apoptotic signaling through regulation of BAD phosphorylation. J Biol Chem 284:8855–8865

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alloway PG, Howard L, Dolph PJ (2000) The formation of stable rhodopsin-arrestin complexes induces apoptosis and photoreceptor cell degeneration. Neuron 28:129–138

    CAS  PubMed  Google Scholar 

  • Amanullah A, Azam N, Balliet A, Hollander C, Hoffman B, Fornace A, Liebermann D (2003) Cell signalling: cell survival and a Gadd45-factor deficiency. Nature 424:741–742

    CAS  PubMed  Google Scholar 

  • Ambacher KK, Pitzul KB, Karajgikar M, Hamilton A, Ferguson SS, Cregan SP (2012) The JNK- and AKT/GSK3 β-signaling pathways converge to regulate Puma induction and neuronal apoptosis induced by trophic factor deprivation. PLoS One 7:e46885

    CAS  PubMed Central  PubMed  Google Scholar 

  • Attramadal H, Arriza JL, Aoki C, Dawson TM, Codina J, Kwatra MM, Snyder SH, Caron MG, Lefkowitz RJ (1992) Beta-arrestin2, a novel member of the arrestin/beta-arrestin gene family. J Biol Chem 267:17882–17890

    CAS  PubMed  Google Scholar 

  • Barone MC, Desouza LA, Freeman RS (2008) Pin1 promotes cell death in NGF-dependent neurons through a mechanism requiring c-Jun activity. J Neurochem 106:734–745

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bayburt TH, Vishnivetskiy SA, McLean M, Morizumi T, Huang C-c, Tesmer JJ, Ernst OP, Sligar SG, Gurevich VV (2011) Rhodopsin monomer is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. J Biol Chem 286:1420–1428

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baylor DA, Lamb TD, Yau KW (1979) Responses of retinal rods to single photons. J Physiol 288:613–634

    CAS  PubMed Central  PubMed  Google Scholar 

  • Behrens A, Sibilia M, Wagner EF (1999) Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat Genet 21:326–329

    CAS  PubMed  Google Scholar 

  • Beurel E, Jope RS (2006) The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol 79:173–189

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bradley JR, Pober JS (2001) Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene 20:6482–6491

    CAS  PubMed  Google Scholar 

  • Bratton SB, Salvesen GS (2010) Regulation of the Apaf-1-caspase-9 apoptosome. J Cell Sci 123:3209–3214

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bredesen DE, Mehlen P, Rabizadeh S (2005) Receptors that mediate cellular dependence. Cell Death Differ 12:1031–1043

    CAS  PubMed  Google Scholar 

  • Breitman M, Kook S, Gimenez LE, Lizama BN, Palazzo MC, Gurevich EV, Gurevich VV (2012) Silent scaffolds: inhibition of c-Jun N-terminal kinase 3 activity in the cell by a dominant-negative arrestin-3 mutant. J Biol Chem 287:19653–19664

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bruckner SR, Tammariello SP, Kuan CY, Flavell RA, Rakic P, Estus S (2001) JNK3 contributes to c-Jun activation and apoptosis but not oxidative stress in nerve growth factor-deprived sympathetic neurons. J Neurochem 78:298–303

    CAS  PubMed  Google Scholar 

  • Cavigelli M, Li W, Lin A, Su B, Yoshioka K, Karin M (1996) The tumor promoter arsenite stimulates AP-1 activity by inhibiting a JNK phosphatase. EMBO J 15:6269–6279

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chai J, Du C, Wu JW, Kyin S, Wang X, Shi Y (2000) Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406:855–862

    CAS  PubMed  Google Scholar 

  • Chang L, Kamata H, Solinas G, Luo JL, Maeda S, Venuprasad K, Liu YC, Karin M (2006) The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-induced cell death by inducing c-FLIP(L) turnover. Cell 124:601–613

    CAS  PubMed  Google Scholar 

  • Chao MV (1994) The p75 neurotrophin receptor. J Neurobiol 25:1373–1385

    CAS  PubMed  Google Scholar 

  • Chen YR, Tan TH (2000) The c-Jun N-terminal kinase pathway and apoptotic signaling (Review). Int J Oncol 16:651–662

    CAS  PubMed  Google Scholar 

  • Chen ZJ, Parent L, Maniatis T (1996) Site-specific phosphorylation of IkappaBalpha by a novel ubiquitination-dependent protein kinase activity. Cell 84:853–862

    CAS  PubMed  Google Scholar 

  • Chen W, Kirkbride KC, How T, Nelson CD, Mo J, Frederick JP, Wang XF, Lefkowitz RJ, Blobe GC (2003) Beta-arrestin 2 mediates endocytosis of type III TGF-beta receptor and down-regulation of its signaling. Science 301:1394–1397

    CAS  PubMed  Google Scholar 

  • Chen J, Rusnak M, Luedtke RR, Sidhu A (2004) D1 dopamine receptor mediates dopamine-induced cytotoxicity via the ERK signal cascade. J Biol Chem 279:39317–39330

    CAS  PubMed  Google Scholar 

  • Chen J, Shi G, Concepcion FA, Xie G, Oprian D, Chen J (2006) Stable rhodopsin/arrestin complex leads to retinal degeneration in a transgenic mouse model of autosomal dominant retinitis pigmentosa. J Neurosci 26:11929–11937

    CAS  PubMed  Google Scholar 

  • Chen J, Rusnak M, Lombroso PJ, Sidhu A (2009) Dopamine promotes striatal neuronal apoptotic death via ERK signaling cascades. Eur J Neurosci 29:287–306

    PubMed Central  PubMed  Google Scholar 

  • Chen Q, Zhuo Y, Francis DJ, Vishnivetskiy SA, Hanson SM, Zhan X, Brooks EK, Iverson TI, Altenbach C, Hubbell WL, Klug CS, Gurevich VV (2013) The two non-visual arrestins form distinct oligomers. J Biol Chem (in revision)

    Google Scholar 

  • Chipuk JE, Green DR (2008) How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18:157–164

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chipuk JE, Green DR (2009) PUMA cooperates with direct activator proteins to promote mitochondrial outer membrane permeabilization and apoptosis. Cell Cycle 8:2692–2696

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chipuk JE, Maurer U, Green DR, Schuler M (2003) Pharmacologic activation of p53 elicits Bax-dependent apoptosis in the absence of transcription. Cancer Cell 4:371–381

    CAS  PubMed  Google Scholar 

  • Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, Green DR (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303:1010–1014

    CAS  PubMed  Google Scholar 

  • Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD, Green DR (2005) PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 309:1732–1735

    CAS  PubMed  Google Scholar 

  • Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR (2010) The BCL-2 family reunion. Mol Cell 37:299–310

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chuang JZ, Vega C, Jun W, Sung CH (2004) Structural and functional impairment of endocytic pathways by retinitis pigmentosa mutant rhodopsin-arrestin complexes. J Clin Invest 114:131–140

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cleghorn WM, Tsakem EL, Song X, Vishnivetskiy SA, Seo J, Chen J, Gurevich EV, Gurevich VV (2011) Progressive reduction of its expression in rods reveals two pools of arrestin-1 in the outer segment with different roles in photoresponse recovery. PLoS One 6:e22797

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coffey ET, Smiciene G, Hongisto V, Cao J, Brecht S, Herdegen T, Courtney MJ (2002) c-Jun N-terminal protein kinase (JNK) 2/3 is specifically activated by stress, mediating c-Jun activation, in the presence of constitutive JNK1 activity in cerebellar neurons. J Neurosci 22:4335–4345

    CAS  PubMed  Google Scholar 

  • Crawford ED, Wells JA (2011) Caspase substrates and cellular remodeling. Annu Rev Biochem 80:1055–1087

    CAS  PubMed  Google Scholar 

  • Crotty TM, Nakano T, Stafforini DM, Topham MK (2013) Diacylglycerol kinase δ modulates Akt phosphorylation through pleckstrin homology domain leucine-rich repeat protein phosphatase 2 (PHLPP2). J Biol Chem 288:1439–1447

    CAS  PubMed  Google Scholar 

  • Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    CAS  PubMed  Google Scholar 

  • Das S, Cho J, Lambertz I, Kelliher MA, Eliopoulos AG, Du K, Tsichlis PN (2005) Tpl2/cot signals activate ERK, JNK, and NF-kappaB in a cell-type and stimulus-specific manner. J Biol Chem 280:23748–23757

    CAS  PubMed  Google Scholar 

  • De Smaele E, Zazzeroni F, Papa S, Nguyen DU, Jin R, Jones J, Cong R, Franzoso G (2001) Induction of gadd45beta by NF-kappaB downregulates pro-apoptotic JNK signalling. Nature 414:308–313

    PubMed  Google Scholar 

  • de Vries JF, Wammes LJ, Jedema I, van Dreunen L, Nijmeijer BA, Heemskerk MH, Willemze R, Falkenburg JH, Barge RM (2007) Involvement of caspase-8 in chemotherapy-induced apoptosis of patient derived leukemia cell lines independent of the death receptor pathway and downstream from mitochondria. Apoptosis 12:181–193

    PubMed  Google Scholar 

  • DeFea KA, Vaughn ZD, O’Bryan EM, Nishijima D, Dery O, Bunnett NW (2000) The proliferative and antiapoptotic effects of substance P are facilitated by formation of a beta-arrestin-dependent scaffolding complex. Proc Natl Acad Sci USA 97:11086–11091

    CAS  PubMed Central  PubMed  Google Scholar 

  • Delbridge AR, Valente LJ, Strasser A (2012) The role of the apoptotic machinery in tumor suppression. Cold Spring Harb Perspect Biol 4:a008789

    PubMed  Google Scholar 

  • Dempsey PW, Doyle SE, He JQ, Cheng G (2003) The signaling adaptors and pathways activated by TNF superfamily. Cytokine Growth Factor Rev 14:193–209

    CAS  PubMed  Google Scholar 

  • Deng Y, Ren X, Yang L, Lin Y, Wu X (2003) A JNK-dependent pathway is required for TNFalpha-induced apoptosis. Cell 115:61–70

    CAS  PubMed  Google Scholar 

  • Dhanasekaran DN, Reddy EP (2008) JNK signaling in apoptosis. Oncogene 27:6245–6251

    CAS  PubMed Central  PubMed  Google Scholar 

  • DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M (1997) A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 388:548–554

    CAS  PubMed  Google Scholar 

  • Dix MM, Simon GM, Cravatt BF (2008) Global mapping of the topography and magnitude of proteolytic events in apoptosis. Cell 134:679–691

    CAS  PubMed Central  PubMed  Google Scholar 

  • Donovan N, Becker EB, Konishi Y, Bonni A (2002) JNK phosphorylation and activation of BAD couples the stress-activated signaling pathway to the cell death machinery. J Biol Chem 277:40944–40949

    CAS  PubMed  Google Scholar 

  • Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42

    CAS  PubMed  Google Scholar 

  • Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ (2006) Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 22:245–257

    CAS  PubMed  Google Scholar 

  • Eilers A, Whitfield J, Shah B, Spadoni C, Desmond H, Ham J (2001) Direct inhibition of c-Jun N-terminal kinase in sympathetic neurones prevents c-jun promoter activation and NGF withdrawal-induced death. J Neurochem 76:1439–1454

    CAS  PubMed  Google Scholar 

  • Emery AC, Pshenichkin S, Takoudjou GR, Grajkowska E, Wolfe BB, Wroblewski JT (2010) The protective signaling of metabotropic glutamate receptor 1 is mediated by sustained, beta-arrestin-1-dependent ERK phosphorylation. J Biol Chem 285:26041–26048

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eom TY, Roth KA, Jope RS (2007) Neural precursor cells are protected from apoptosis induced by trophic factor withdrawal or genotoxic stress by inhibitors of glycogen synthase kinase 3. J Biol Chem 282:22856–22864

    CAS  PubMed Central  PubMed  Google Scholar 

  • Esposito G, Perrino C, Cannavo A, Schiattarella GG, Borgia F, Sannino A, Pironti G, Gargiulo G, Di Serafino L, Franzone A, Scudiero L, Grieco P, Indolfi C, Chiariello M (2011) EGFR trans-activation by urotensin II receptor is mediated by β-arrestin recruitment and confers cardioprotection in pressure overload-induced cardiac hypertrophy. Basic Res Cardiol 106:577–589

    Google Scholar 

  • Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM (2000) Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 275:8945–8951

    CAS  PubMed  Google Scholar 

  • Fogarty MP, Downer EJ, Campbell V (2003) A role for c-Jun N-terminal kinase 1 (JNK1), but not JNK2, in the beta-amyloid-mediated stabilization of protein p53 and induction of the apoptotic cascade in cultured cortical neurons. Biochem J 371:789–798

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fulda S, Meyer E, Friesen C, Susin SA, Kroemer G, Debatin KM (2001) Cell type specific involvement of death receptor and mitochondrial pathways in drug-induced apoptosis. Oncogene 20:1063–1075

    CAS  PubMed  Google Scholar 

  • Gao H, Sun Y, Wu Y, Luan B, Wang Y, Qu B, Pei G (2004) Identification of beta-arrestin2 as a G protein-coupled receptor-stimulated regulator of NF-kappaB pathways. Mol Cell 14:303–317

    CAS  PubMed  Google Scholar 

  • Gao Y, Signore AP, Yin W, Cao G, Yin XM, Sun F, Luo Y, Graham SH, Chen J (2005) Neuroprotection against focal ischemic brain injury by inhibition of c-Jun N-terminal kinase and attenuation of the mitochondrial apoptosis-signaling pathway. J Cereb Blood Flow Metab 25:694–712

    CAS  PubMed  Google Scholar 

  • Goldschneider D, Mehlen P (2010) Dependence receptors: a new paradigm in cell signaling and cancer therapy. Oncogene 29:1865–1882

    CAS  PubMed  Google Scholar 

  • Guicciardi ME, Gores GJ (2009) Life and death by death receptors. FASEB J 23:1625–1637

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta S, Barrett T, Whitmarsh AJ, Cavanagh J, Sluss HK, Dérijard B, Davis RJ (1996) Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J 15:2760–2770

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gurevich EV, Gurevich VV (2006) Arrestins are ubiquitous regulators of cellular signaling pathways. Genome Biol 7:236

    PubMed Central  PubMed  Google Scholar 

  • Gurevich VV, Gurevich EV (2009) Phototransduction: inactivation in rods. In: Dart D (ed) Encyclopedia of the eye. Academic, Oxford, pp 375–380

    Google Scholar 

  • Gurevich VV, Gurevich EV (2010) Phototransduction: inactivation in cones. In: Dartt DA (ed) Encyclopedia of the eye. Academic, Oxford, pp 370–374

    Google Scholar 

  • Gurevich VV, Gurevich EV (2012) Synthetic biology with surgical precision: targeted reengineering of signaling proteins. Cell Signal 24:1899–1908

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gurevich EV, Benovic JL, Gurevich VV (2004) Arrestin2 expression selectively increases during neural differentiation. J Neurochem 91:1404–1416

    CAS  PubMed  Google Scholar 

  • Gurevich VV, Hanson SM, Song X, Vishnivetskiy SA, Gurevich EV (2011) The functional cycle of visual arrestins in photoreceptor cells. Prog Retin Eye Res 30:405–430

    CAS  PubMed Central  PubMed  Google Scholar 

  • Habelhah H, Takahashi S, Cho SG, Kadoya T, Watanabe T, Ronai Z (2004) Ubiquitination and translocation of TRAF2 is required for activation of JNK but not of p38 or NF-kappaB. EMBO J 23:322–332

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson SM, Gurevich EV, Vishnivetskiy SA, Ahmed MR, Song X, Gurevich VV (2007a) Each rhodopsin molecule binds its own arrestin. Proc Natl Acad Sci USA 104:3125–3128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson SM, Van Eps N, Francis DJ, Altenbach C, Vishnivetskiy SA, Klug CS, Hubbell WL, Gurevich VV (2007b) Structure and function of the visual arrestin oligomer. EMBO J 26:1726–1736

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson SM, Vishnivetskiy SA, Hubbell WL, Gurevich VV (2008a) Opposing effects of inositol hexakisphosphate on rod arrestin and arrestin2 self-association. Biochemistry 47:1070–1075

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson SM, Dawson ES, Francis DJ, Van Eps N, Klug CS, Hubbell WL, Meiler J, Gurevich VV (2008b) A model for the solution structure of the rod arrestin tetramer. Structure 16:924–934

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hara MR, Kovacs JJ, Whalen EJ, Rajagopal S, Strachan RT, Grant W, Towers AJ, Williams B, Lam CM, Xiao K, Shenoy SK, Gregory SG, Ahn S, Duckett DR, Lefkowitz RJ (2011) A stress response pathway regulates DNA damage through β2-adrenoreceptors and β-arrestin-1. Nature 477:349–353

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hara MR, Sachs BD, Caron MG, Lefkowitz RJ (2013) Pharmacological blockade of a β(2)AR-β-arrestin-1 signaling cascade prevents the accumulation of DNA damage in a behavioral stress model. Cell Cycle 12:219–224

    CAS  PubMed  Google Scholar 

  • Harrington AW, Kim JY, Yoon SO (2002) Activation of Rac GTPase by p75 is necessary for c-jun N-terminal kinase-mediated apoptosis. J Neurosci 22:156–166

    CAS  PubMed  Google Scholar 

  • Hetman M, Cavanaugh JE, Kimelman D, Xia Z (2000) Role of glycogen synthase kinase-3beta in neuronal apoptosis induced by trophic withdrawal. J Neurosci 20:2567–2574

    CAS  PubMed  Google Scholar 

  • Hoeppner CZ, Cheng N, Ye RD (2012) Identification of a nuclear localization sequence in β-arrestin-1 and its functional implications. J Biol Chem 287:8932–8943

    CAS  PubMed Central  PubMed  Google Scholar 

  • Honda R, Yasuda H (2000) Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene 19:1473–1476

    CAS  PubMed  Google Scholar 

  • Huang SP, Brown BM, Craft CM (2010) Visual arrestin 1 acts as a modulator for N-ethylmaleimide-sensitive factor in the photoreceptor synapse. J Neurosci 30:9381–9391

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ichim G, Tauszig-Delamasure S, Mehlen P (2012) Neurotrophins and cell death. Exp Cell Res 318:1221–1228

    CAS  PubMed  Google Scholar 

  • Imamoto Y, Tamura C, Kamikubo H, Kataoka M (2003) Concentration-dependent tetramerization of bovine visual arrestin. Biophys J 85:1186–1195

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones SN, Roe AE, Donehower LA, Bradley A (1995) Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378:206–208

    CAS  PubMed  Google Scholar 

  • Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M (2005) Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120:649–661

    CAS  PubMed  Google Scholar 

  • Kang J, Shi Y, Xiang B, Qu B, Su W, Zhu M, Zhang M, Bao G, Wang F, Zhang X, Yang R, Fan F, Chen X, Pei G, Ma L (2005) A nuclear function of beta-arrestin1 in GPCR signaling: regulation of histone acetylation and gene transcription. Cell 123:833–847

    CAS  PubMed  Google Scholar 

  • Kim H, Tu HC, Ren D, Takeuchi O, Jeffers JR, Zambetti GP, Hsieh JJ, Cheng EH (2009a) Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol Cell 36:487–499

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim HJ, Lee HJ, Jun JI, Oh Y, Choi SG, Kim H, Chung CW, Kim IK, Park IS, Chae HJ, Kim HR, Jung YK (2009b) Intracellular cleavage of osteopontin by caspase-8 modulates hypoxia/reoxygenation cell death through p53. Proc Natl Acad Sci USA 106:15326–15331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim M, Hanson SM, Vishnivetskiy SA, Song X, Cleghorn WM, Hubbell WL, Gurevich VV (2011) Robust self-association is a common feature of mammalian visual arrestin-1. Biochemistry 50:2235–2242

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim KS, Abraham D, Williams B, Violin JD, Mao L, Rockman HA (2012a) β-Arrestin-biased AT1R stimulation promotes cell survival during acute cardiac injury. Am J Physiol Heart Circ Physiol 303:H1001–H1010

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim M, Vishnivetskiy SA, Van Eps N, Alexander NS, Cleghorn WM, Zhan X, Hanson SM, Morizumi T, Ernst OP, Meiler J, Gurevich VV, Hubbell WL (2012b) Conformation of receptor-bound visual arrestin. Proc Natl Acad Sci USA 109:18407–18412

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kiselev A, Socolich M, Vinos J, Hardy RW, Zuker CS, Ranganathan R (2000) A molecular pathway for light-dependent photoreceptor apoptosis in Drosophila. Neuron 28:139–152

    CAS  PubMed  Google Scholar 

  • Kohout TA, Lin FS, Perry SJ, Conner DA, Lefkowitz RJ (2001) beta-Arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking. Proc Natl Acad Sci USA 98:1601–1606

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kook S, Zhan X, Cleghorn WM, Benovic JL, Gurevich VV, Gurevich EV (2013) Caspase-cleaved arrestin-2 and BID cooperatively facilitate cytochrome C release and cell death. Cell Death Differ (In Press)

    Google Scholar 

  • Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH (2000) Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 7:1166–1173

    CAS  PubMed  Google Scholar 

  • Kreuz S, Siegmund D, Scheurich P, Wajant H (2001) NF-kappaB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol Cell Biol 21(12):3964–3973

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kristaponyte I, Hong Y, Lu H, Shieh BH (2012) Role of rhodopsin and arrestin phosphorylation in retinal degeneration of Drosophila. J Neurosci 32:10758–10766

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krupnick JG, Gurevich VV, Benovic JL (1997) Mechanism of quenching of phototransduction: binding competition between arrestin and transducin for phosphorhodopsin. J Biol Chem 272:18125–18131

    CAS  PubMed  Google Scholar 

  • Kuan CY, Whitmarsh AJ, Yang DD, Liao G, Schloemer AJ, Dong C, Bao J, Banasiak KJ, Haddad GG, Flavell RA, Davis RJ, Rakic P (2003) A critical role of neural-specific JNK3 for ischemic apoptosis. Proc Natl Acad Sci USA 100:15184–15189

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kucharczak J, Simmons MJ, Fan Y, Gelinas C (2003) To be, or not to be: NF-κB is the answer–role of Rel/NF-κB in the regulation of apoptosis. Oncogene 22:8961–8982

    CAS  PubMed  Google Scholar 

  • Kurokawa M, Kornbluth S (2009) Caspases and kinases in a death grip. Cell 138:838–854

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lavrik I, Golks A, Krammer PH (2005) Death receptor signaling. J Cell Sci 118:265–267

    CAS  PubMed  Google Scholar 

  • Lee TH, Huang Q, Oikemus S, Shank J, Ventura JJ, Cusson N, Vaillancourt RR, Su B, Davis RJ, Kelliher MA (2003) The death domain kinase RIP1 is essential for tumor necrosis factor alpha signaling to p38 mitogen-activated protein kinase. Mol Cell Biol 23:8377–8385

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by beta-arrestins. Science 308:512–517

    CAS  PubMed  Google Scholar 

  • Lei K, Davis RJ (2003) JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci USA 100:2432–2437

    CAS  PubMed Central  PubMed  Google Scholar 

  • Le-Niculescu H, Bonfoco E, Kasuya Y, Claret FX, Green DR, Karin M (1999) Withdrawal of survival factors results in activation of the JNK pathway in neuronal cells leading to Fas ligand induction and cell death. Mol Cell Biol 19:751–763

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    CAS  PubMed  Google Scholar 

  • Li H, Sun X, LeSage G, Zhang Y, Liang Z, Chen J, Hanley G, He L, Sun S, Yin D (2010) β-arrestin 2 regulates Toll-like receptor 4-mediated apoptotic signalling through glycogen synthase kinase-3β. Immunology 130:556–563

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lindsten T et al (2000) The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 6:1389–1399

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lohse MJ, Andexinger S, Pitcher J, Trukawinski S, Codina J, Faure JP, Caron MG, Lefkowitz RJ (1992) Receptor-specific desensitization with purified proteins. Kinase dependence and receptor specificity of beta-arrestin and arrestin in the beta 2-adrenergic receptor and rhodopsin systems. J Biol Chem 267:8558–8564

    CAS  PubMed  Google Scholar 

  • Lovell JF, Billen LP, Bindner S, Shamas-Din A, Fradin C, Leber B, Andrews DW (2008) Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by Bax. Cell 135:1074–1084

    CAS  PubMed  Google Scholar 

  • Luan B, Zhang Z, Wu Y, Kang J, Pei G (2005) Beta-arrestin2 functions as a phosphorylation-regulated suppressor of UV-induced NF-kappaB activation. EMBO J 24:4237–4246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490

    CAS  PubMed  Google Scholar 

  • Lüthi AU, Martin SJ (2007) The CASBAH: a searchable database of caspase substrates. Cell Death Differ 14:641–650

    PubMed  Google Scholar 

  • Luttrell LM, Miller WE (2013) Arrestins as regulators of kinases and phosphatases. Prog Mol Biol Transl Sci 118:115–147

    CAS  PubMed  Google Scholar 

  • Mahrus S, Trinidad JC, Barkan DT, Sali A, Burlingame AL, Wells JA (2008) Global sequencing of proteolytic cleavage sites in apoptosis by specific labeling of protein N termini. Cell 134:866–876

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mansouri A, Ridgway LD, Korapati AL, Zhang Q, Tian L, Wang Y, Siddik ZH, Mills GB, Claret FX (2003) Sustained activation of JNK/p38 MAPK pathways in response to cisplatin leads to Fas ligand induction and cell death in ovarian carcinoma cells. J Biol Chem 278:19245–19256

    CAS  PubMed  Google Scholar 

  • Martin JH, Mohit AA, Miller CA (1996) Developmental expression in the mouse nervous system of the p493F12 SAP kinase. Brain Res Mol Brain Res 35:47–57

    CAS  PubMed  Google Scholar 

  • McDonald PH, Cote NL, Lin FT, Premont RT, Pitcher JA, Lefkowitz RJ (1999) Identification of NSF as a beta-arrestin1-binding protein. Implications for beta2-adrenergic receptor regulation. J Biol Chem 274:10677–10680

    CAS  PubMed  Google Scholar 

  • McDonald PH, Chow CW, Miller WE, Laporte SA, Field ME, Lin FT, Davis RJ, Lefkowitz RJ (2000) Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290:1574–1577

    CAS  PubMed  Google Scholar 

  • McLean S, Bhattacharya M, Di Guglielmo GM (2013) βarrestin2 interacts with TβRII to regulate Smad-dependent and Smad-independent signal transduction. Cell Signal 25:319–331

    CAS  PubMed  Google Scholar 

  • Mendes HF, van der Spuy J, Chapple JP, Cheetham ME (2005) Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy. Trends Mol Med 11:177–185

    CAS  PubMed  Google Scholar 

  • Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, Young DB, Barbosa M, Mann M, Manning A, Rao A (1997) IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278:860–866

    CAS  PubMed  Google Scholar 

  • Michalak EM, Villunger A, Adams JM, Strasser A (2008) In several cell types tumour suppressor p53 induces apoptosis largely via Puma but Noxa can contribute. Cell Death Differ 15:1019–1029

    CAS  PubMed Central  PubMed  Google Scholar 

  • Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:181–190

    CAS  PubMed  Google Scholar 

  • Micheau O, Lens S, Gaide O, Alevizopoulos K, Tschopp J (2001) NF-kappaB signals induce the expression of c-FLIP. Mol Cell Biol 21:5299–5305

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller WE, McDonald PH, Cai SF, Field ME, Davis RJ, Lefkowitz RJ (2001) Identification of a motif in the carboxyl terminus of beta -arrestin2 responsible for activation of JNK3. J Biol Chem 276:27770–27777

    CAS  PubMed  Google Scholar 

  • Mishra R, Barthwal MK, Sondarva G, Rana B, Wong L, Chatterjee M, Woodgett JR, Rana A (2007) Glycogen synthase kinase-3beta induces neuronal cell death via direct phosphorylation of mixed lineage kinase 3. J Biol Chem 282:30393–30405

    CAS  PubMed  Google Scholar 

  • Moaven H, Koike Y, Jao CC, Gurevich VV, Langen R, Chen J (2013) Visual arrestin interaction with clathrin adaptor AP-2 regulates photoreceptor survival in the vertebrate retina. Proc Natl Acad Sci USA 110:9463–9468

    CAS  PubMed Central  PubMed  Google Scholar 

  • Montes de Oca Luna R, Wagner DS, Lozano G (1995) Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378:203–206

    CAS  PubMed  Google Scholar 

  • Morishima Y, Gotoh Y, Zieg J, Barrett T, Takano H, Flavell R, Davis RJ, Shirasaki Y, Greenberg ME (2001) Beta-amyloid induces neuronal apoptosis via a mechanism that involves the c-Jun N-terminal kinase pathway and the induction of Fas ligand. J Neurosci 21:7551–7560

    CAS  PubMed  Google Scholar 

  • Naik E, Michalak EM, Villunger A, Adams JM, Strasser A (2007) Ultraviolet radiation triggers apoptosis of fibroblasts and skin keratinocytes mainly via the BH3-only protein Noxa. J Cell Biol 176:415–424

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nair KS, Hanson SM, Mendez A, Gurevich EV, Kennedy MJ, Shestopalov VI, Vishnivetskiy SA, Chen J, Hurley JB, Gurevich VV, Slepak VZ (2005) Light-dependent redistribution of arrestin in vertebrate rods is an energy-independent process governed by protein-protein interactions. Neuron 46:555–567

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakano K, Vousden KH (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7:683–694

    CAS  PubMed  Google Scholar 

  • Namgung U, Xia Z (2000) Arsenite-induced apoptosis in cortical neurons is mediated by c-Jun N-terminal protein kinase 3 and p38 mitogen-activated protein kinase. J Neurosci 20:6442–6451

    CAS  PubMed  Google Scholar 

  • Napetschnig J, Wu H (2013) Molecular basis of NF-κB signaling. Annu Rev Biophys 42:443–468

    CAS  PubMed Central  PubMed  Google Scholar 

  • Natoli G, Costanzo A, Ianni A, Templeton DJ, Woodgett JR, Balsano C, Levrero M (1997) Activation of SAPK/JNK by TNF receptor 1 through a noncytotoxic TRAF2-dependent pathway. Science 275:200–203

    CAS  PubMed  Google Scholar 

  • Nikonov SS, Brown BM, Davis JA, Zuniga FI, Bragin A, Pugh ENJ, Craft CM (2008) Mouse cones require an arrestin for normal inactivation of phototransduction. Neuron 59:462–474

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K (1999) The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398:252–256

    CAS  PubMed  Google Scholar 

  • Nishitoh H, Saitoh M, Mochida Y, Takeda K, Nakano H, Rothe M, Miyazono K, Ichijo H (1998) ASK1 is essential for JNK/SAPK activation by TRAF2. Mol Cell 2:389–395

    CAS  PubMed  Google Scholar 

  • Nykjaer A, Willnow TE, Petersen CM (2005) p75NTR—live or let die. Curr Opin Neurobiol 15:49–57

    CAS  PubMed  Google Scholar 

  • O’Donnell MA, Ting AT (2010) Chronicles of a death foretold: dual sequential cell death checkpoints in TNF signaling. Cell Cycle 9:1065–1071

    PubMed  Google Scholar 

  • Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288:1053–1058

    CAS  PubMed  Google Scholar 

  • Okuno S, Saito A, Hayashi T, Chan PH (2004) The c-Jun N-terminal protein kinase signaling pathway mediates Bax activation and subsequent neuronal apoptosis through interaction with Bim after transient focal cerebral ischemia. J Neurosci 24:7879–7887

    CAS  PubMed  Google Scholar 

  • Oleinik NV, Krupenko NI, Krupenko SA (2007) Cooperation between JNK1 and JNK2 in activation of p53 apoptotic pathway. Oncogene 26:7222–7230

    CAS  PubMed  Google Scholar 

  • Oliver TG, Meylan E, Chang GP, Xue W, Burke JR, Humpton TJ, Hubbard D, Bhutkar A, Jacks T (2011) Caspase-2-mediated cleavage of Mdm2 creates a p53-induced positive feedback loop. Mol Cell 43:57–71

    CAS  PubMed Central  PubMed  Google Scholar 

  • Papa S, Zazzeroni F, Bubici C, Jayawardena S, Alvarez K, Matsuda S, Nguyen DU, Pham CG, Nelsbach AH, Melis T, De Smaele E, Tang WJ, D’Adamio L, Franzoso G (2004) Gadd45 beta mediates the NF-kappa B suppression of JNK signalling by targeting MKK7/JNKK2. Nat Cell Biol 6:146–153

    CAS  PubMed  Google Scholar 

  • Parant J, Chavez-Reyes A, Little NA, Yan W, Reinke V, Jochemsen AG, Lozano G (2001) Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat Genet 29:92–95

    CAS  PubMed  Google Scholar 

  • Pobezinskaya YL, Liu Z (2012) The role of TRADD in death receptor signaling. Cell Cycle 11:871–876

    CAS  PubMed Central  PubMed  Google Scholar 

  • Povsic TJ, Kohout TA, Lefkowitz RJ (2003) Beta-arrestin1 mediates insulin-like growth factor 1 (IGF-1) activation of phosphatidylinositol 3-kinase (PI3K) and anti-apoptosis. J Biol Chem 278:51334–51339

    CAS  PubMed  Google Scholar 

  • Pugh EN Jr, Lamb TD (2000) Phototransduction in vertebrate rods and cones: molecular mechanisms of amplification, recovery and light adaptation. In: Stavenga DG, DeGrip WJ, Pugh EN Jr (eds) Handbook of biological physics. Molecular mechanisms in visual transduction. Elsevier, Amsterdam, pp 183–255

    Google Scholar 

  • Putcha GV, Le S, Frank S, Besirli CG, Clark K, Chu B, Alix S, Youle RJ, LaMarche A, Maroney AC, Johnson EMJ (2003) JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis. Neuron 38:899–914

    CAS  PubMed  Google Scholar 

  • Quoyer J, Longuet C, Broca C, Linck N, Costes S, Varin E, Bockaert J, Bertrand G, Dalle S (2010) GLP-1 mediates antiapoptotic effect by phosphorylating Bad through a beta-arrestin 1-mediated ERK1/2 activation in pancreatic beta-cells. J Biol Chem 285:1989–2002

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rabizadeh S, Bredesen DE (2003) Ten years on: mediation of cell death by the common neurotrophin receptor p75(NTR). Cytokine Growth Factor Rev 14:225–239

    CAS  PubMed  Google Scholar 

  • Reinhard C, Shamoon B, Shyamala V, Williams LT (1997) Tumor necrosis factor alpha-induced activation of c-jun N-terminal kinase is mediated by TRAF2. EMBO J 16:1080–1092

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ren D, Tu HC, Kim H, Wang GX, Bean GR, Takeuchi O, Jeffers JR, Zambetti GP, Hsieh JJ, Cheng EH (2010) BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Science 330:1390–1393

    CAS  PubMed Central  PubMed  Google Scholar 

  • Revankar CM, Vines CM, Cimino DF, Prossnitz ER (2004) Arrestins block G protein-coupled receptor-mediated apoptosis. J Biol Chem 279:24578–24584

    CAS  PubMed  Google Scholar 

  • Riedl SJ, Salvesen GS (2007) The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol 8:405–413

    CAS  PubMed  Google Scholar 

  • Rim J, Oprian DD (1995) Constitutive activation of opsin: interaction of mutants with rhodopsin kinase and arrestin. Biochemistry 34:11938–11945

    CAS  PubMed  Google Scholar 

  • Roff M, Thompson J, Rodriguez MS, Jacque JM, Baleux F, Arenzana-Seisdedos F, Hay RT (1996) Role of IkappaBalpha ubiquitination in signal-induced activation of NFkappaB in vivo. J Biol Chem 271:7844–7850

    CAS  PubMed  Google Scholar 

  • Rojanathammanee L, Harmon EB, Grisanti LA, Govitrapong P, Ebadi M, Grove BD, Miyagi M, Porter JE (2009) The 27-kDa heat shock protein confers cytoprotective effects through a beta 2-adrenergic receptor agonist-initiated complex with beta-arrestin. Mol Pharmacol 75:855–865

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salehi AH, Xanthoudakis S, Barker PA (2002) NRAGE, a p75 neurotrophin receptor-interacting protein, induces caspase activation and cell death through a JNK-dependent mitochondrial pathway. J Biol Chem 277:48043–48050

    CAS  PubMed  Google Scholar 

  • Sánchez-Perez I, Murguía JR, Perona R (1998) Cisplatin induces a persistent activation of JNK that is related to cell death. Oncogene 16:533–540

    PubMed  Google Scholar 

  • Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T, Matsumoto K, Takeuchi O, Akira S (2005) Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 6:1087–1095

    CAS  PubMed  Google Scholar 

  • Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scaffidi C, Schmitz I, Zha J, Korsmeyer SJ, Krammer PH, Peter ME (1999) Differential modulation of apoptosis sensitivity in CD95 type I and type II cells. J Biol Chem 274:22532–22538

    CAS  PubMed  Google Scholar 

  • Schneider-Brachert W, Tchikov V, Neumeyer J, Jakob M, Winoto-Morbach S, Held-Feindt J, Heinrich M, Merkel O, Ehrenschwender M, Adam D, Mentlein R, Kabelitz D, Schütze S (2004) Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles. Immunity 21:415–428

    CAS  PubMed  Google Scholar 

  • Schubert C, Hirsch JA, Gurevich VV, Engelman DM, Sigler PB, Fleming KG (1999) Visual arrestin activity may be regulated by self-association. J Biol Chem 274:21186–21190

    CAS  PubMed  Google Scholar 

  • Scott MG, Le Rouzic E, Perianin A, Pierotti V, Enslen H, Benichou S, Marullo S, Benmerah A (2002) Differential nucleocytoplasmic shuttling of beta-arrestins. Characterization of a leucine-rich nuclear export signal in beta-arrestin2. J Biol Chem 277:37693–37701

    CAS  PubMed  Google Scholar 

  • Seo J, Tsakem EL, Breitman M, Gurevich VV (2011) Identification of arrestin-3-specific residues necessary for JNK3 kinase activation. J Biol Chem 286:27894–27901

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sessler T, Healy S, Samali A, Szegezdi E (2013) Structural determinants of DISC function: new insights into death receptor-mediated apoptosis signalling. Pharmacol Ther (in press)

    Google Scholar 

  • Shi Y, Feng Y, Kang J, Liu C, Li Z, Li D, Cao W, Qiu J, Guo Z, Bi E, Zang L, Lu C, Zhang JZ, Pei G (2007) Critical regulation of CD4(+) T cell survival and autoimmunity by beta-arrestin 1. Nat Immunol 8:817–824

    CAS  PubMed  Google Scholar 

  • Singhal A, Ostermaier MK, Vishnivetskiy SA, Panneels V, Homan KT, Tesmer JJ, Veprintsev D, Deupi X, Gurevich VV, Schertler GF, Standfuss J (2013) Insights into congenital night blindness based on the structure of G90D rhodopsin. EMBO Rep 14:520–526

    CAS  PubMed  Google Scholar 

  • Slee EA, Keogh SA, Martin SJ (2000) Cleavage of BID during cytotoxic drug and UV radiation-induced apoptosis occurs downstream of the point of Bcl-2 action and is catalysed by caspase-3: a potential feedback loop for amplification of apoptosis-associated mitochondrial cytochrome c release. Cell Death Differ 7:556–565

    CAS  PubMed  Google Scholar 

  • Song X, Raman D, Gurevich EV, Vishnivetskiy SA, Gurevich VV (2006) Visual and both non-visual arrestins in their “inactive” conformation bind JNK3 and Mdm2 and relocalize them from the nucleus to the cytoplasm. J Biol Chem 281:21491–21499

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song X, Coffa S, Fu H, Gurevich VV (2009a) How does arrestin assemble MAPKs into a signaling complex? J Biol Chem 284:685–695

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song X, Vishnivetskiy SA, Gross OP, Emelianoff K, Mendez A, Chen J, Gurevich EV, Burns ME, Gurevich VV (2009b) Enhanced arrestin facilitates recovery and protects rod photoreceptors deficient in rhodopsin phosphorylation. Curr Biol 19:700–705

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song X, Vishnivetskiy SA, Seo J, Chen J, Gurevich EV, Gurevich VV (2011) Arrestin1 expression in rods: balancing functional performance and photoreceptor health. Neuroscience 174:37–49

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song X, Seo J, Baameur F, Vishnivetskiy SA, Chen Q, Kook S, Kim M, Brooks EK, Altenbach C, Hong Y, Hanson SM, Palazzo MC, Chen J, Hubbell WL, Gurevich EV, Gurevich VV (2013) Rapid degeneration of rod photoreceptors expressing self-association-deficient arrestin-1 mutant. Cell Signal 25:2613–2624

    Google Scholar 

  • Steller H (1995) Mechanisms and genes of cellular suicide. Science 267:1445–1449

    CAS  PubMed  Google Scholar 

  • Stommel JM, Wahl GM (2005) A new twist in the feedback loop: stress-activated MDM2 destabilization is required for p53 activation. Cell Cycle 4:411–417

    CAS  PubMed  Google Scholar 

  • Tan E, Wang Q, Quiambao AB, Xu X, Qtaishat NM, Peachey NS, Lem J, Fliesler SJ, Pepperberg DR, Naash MI, Al-Ubaidi MR (2001) The relationship between opsin overexpression and photoreceptor degeneration. Invest Ophthalmol Vis Sci 42:589–600

    CAS  PubMed  Google Scholar 

  • Tang G, Minemoto Y, Dibling B, Purcell NH, Li Z-W, Karin M, Lin A (2001) Inhibition of JNK activation through NF-κB target genes. Nature 414:313–317

    CAS  PubMed  Google Scholar 

  • Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    CAS  PubMed  Google Scholar 

  • Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA, Davis RJ (2000) Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288:870–874

    CAS  PubMed  Google Scholar 

  • Tsuruta F, Sunayama J, Mori Y, Hattori S, Shimizu S, Tsujimoto Y, Yoshioka K, Masuyama N, Gotoh Y (2004) JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins. EMBO J 23:1889–1899

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vaux DL, Haecker G, Strasser A (1994) An evolutionary perspective on apoptosis. Cell 76:777–779

    CAS  PubMed  Google Scholar 

  • Villunger A, Michalak EM, Coultas L, Müllauer F, Böck G, Ausserlechner MJ, Adams JM, Strasser A (2003) p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 302:1036–1038

    CAS  PubMed  Google Scholar 

  • Vines CM, Revankar CM, Maestas DC, LaRusch LL, Cimino DF, Kohout TA, Lefkowitz RJ, Prossnitz ER (2003) N-formyl peptide receptors internalize but do not recycle in the absence of arrestins. J Biol Chem 278:41581–41584

    CAS  PubMed  Google Scholar 

  • Vishnivetskiy SA, Ostermaierm MK, Singhal A, Panneels V, Homan KT, Glukhova A, Sligar SG, Tesmer JJ, Schertler GF, Standfuss J, Gurevich VV (2013) Constitutively active rhodopsin mutants causing night blindness are effectively phosphorylated by GRKs but differ in arrestin-1 binding. Cell Signal 25:2155–2162

    CAS  PubMed  Google Scholar 

  • von Haefen C, Wieder T, Essmann F, Schulze-Osthoff K, Dörken B, Daniel PT (2003) Paclitaxel-induced apoptosis in BJAB cells proceeds via a death receptor-independent, caspases-3/-8-driven mitochondrial amplification loop. Oncogene 22:2236–2247

    Google Scholar 

  • Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8:275–283

    CAS  PubMed  Google Scholar 

  • Wagener BM, Marjon NA, Revankar CM, Prossnitz ER (2009) Adaptor protein-2 interaction with arrestin regulates GPCR recycling and apoptosis. Traffic 10:1286–1300

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412:346–351

    CAS  PubMed  Google Scholar 

  • Wang P, Wu Y, Ge X, Ma L, Pei G (2003a) Subcellular localization of beta-arrestins is determined by their intact N domain and the nuclear export signal at the C terminus. J Biol Chem 278:11648–11653

    CAS  PubMed  Google Scholar 

  • Wang P, Gao H, Ni Y, Wang B, Wu Y, Ji L, Qin L, Ma L, Pei G (2003b) Beta-arrestin 2 functions as a G-protein-coupled receptor-activated regulator of oncoprotein Mdm2. J Biol Chem 278:6363–6370

    CAS  PubMed  Google Scholar 

  • Wang WH, Grégori G, Hullinger RL, Andrisani OM (2004) Sustained activation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase pathways by hepatitis B virus X protein mediates apoptosis via induction of Fas/FasL and tumor necrosis factor (TNF) receptor 1/TNF-alpha expression. Mol Cell Biol 24:10325–10365

    Google Scholar 

  • Wang Y, Tang Y, Teng L, Wu Y, Zhao X, Pei G (2006) Association of beta-arrestin and TRAF6 negatively regulates Toll-like receptor-interleukin 1 receptor signaling. Nat Immunol 7:139–147

    CAS  PubMed  Google Scholar 

  • Wang L, Du F, Wang X (2008) TNF-α induces two distinct caspase-8 activation pathways. Cell 133:693–703

    CAS  PubMed  Google Scholar 

  • Wang X, Wang J, Jiang X (2011) MdmX protein is essential for Mdm2 protein-mediated p53 polyubiquitination. J Biol Chem 286:23725–23734

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watcharasit P, Thiantanawat A, Satayavivad J (2008) GSK3 promotes arsenite-induced apoptosis via facilitation of mitochondria disruption. J Appl Toxicol 28:466–474

    CAS  PubMed  Google Scholar 

  • Wei MC, Lindsten T, Mootha VK, Weiler S, Gross A, Ashiya M, Thompson CB, Korsmeyer SJ (2000) tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 14:2060–2071

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilden U (1995) Duration and amplitude of the light-induced cGMP hydrolysis in vertebrate photoreceptors are regulated by multiple phosphorylation of rhodopsin and by arrestin binding. Biochemistry 34:1446–1454

    CAS  PubMed  Google Scholar 

  • Witherow DS, Garrison TR, Miller WE, Lefkowitz RJ (2004) beta-Arrestin inhibits NF-kappaB activity by means of its interaction with the NF-kappaB inhibitor IkappaBalpha. Proc Natl Acad Sci USA 101:8603–8607

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wolan DW, Zorn JA, Gray DC, Wells JA (2009) Small-molecule activators of a proenzyme. Science 326:853–858

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu J, Dodd RL, Makino CL, Simon MI, Baylor DA, Chen J (1997) Prolonged photoresponses in transgenic mouse rods lacking arrestin. Nature 389:505–509

    CAS  PubMed  Google Scholar 

  • Xu C, Reichert EC, Nakano T, Lohse M, Gardner AA, Revelo MP, Topham MK, Stafforini DM (2013) Deficiency of phospholipase A2 group 7 decreases intestinal polyposis and colon tumorigenesis in Apc(Min/+) mice. Cancer Res 73:2806–2816

    CAS  PubMed  Google Scholar 

  • Yamamoto K, Ichijo H, Korsmeyer SJ (1999) BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol Cell Biol 19:8469–8478

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaoka S, Courtois G, Bessia C, Whiteside ST, Weil R, Agou F, Kirk HE, Kay RJ, Israël A (1998) Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation. Cell 93:1231–1240

    CAS  PubMed  Google Scholar 

  • Yang DD, Kuan CY, Whitmarsh AJ, Rincón M, Zheng TS, Davis RJ, Rakic P, Flavell RA (1997) Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389:865–870

    CAS  PubMed  Google Scholar 

  • Yang J, Lin Y, Guo Z, Cheng J, Huang J, Deng L, Liao W, Chen Z, Liu Z, Su B (2001) The essential role of MEKK3 in TNF-induced NF-kappaB activation. Nat Immunol 2:620–624

    CAS  PubMed  Google Scholar 

  • Yao M, Nguyen TV, Pike CJ (2005) Beta-amyloid-induced neuronal apoptosis involves c-Jun N-terminal kinase-dependent downregulation of Bcl-w. J Neurosci 25:1149–1158

    CAS  PubMed  Google Scholar 

  • Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    CAS  PubMed  Google Scholar 

  • Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B (2001) PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell 7:673–682

    CAS  PubMed  Google Scholar 

  • Yuasa T, Ohno S, Kehrl JH, Kyriakis JM (1998) Tumor necrosis factor signaling to stress-activated protein kinase (SAPK)/Jun NH2-terminal kinase (JNK) and p38. Germinal center kinase couples TRAF2 to mitogen-activated protein kinase/ERK kinase kinase 1 and SAPK while receptor interacting protein associates with a mitogen-activated protein kinase kinase kinase upstream of MKK6 and p38. J Biol Chem 273:22681–22692

    CAS  PubMed  Google Scholar 

  • Zanke BW, Boudreau K, Rubie E, Winnett E, Tibbles LA, Zon L, Kyriakis J, Liu FF, Woodgett JR (1996) The stress-activated protein kinase pathway mediates cell death following injury induced by cis-platinum, UV irradiation or heat. Curr Biol 6:606–613

    CAS  PubMed  Google Scholar 

  • Zhan X, Kaoud TS, Dalby KN, Gurevich VV (2011) Non-visual arrestins function as simple scaffolds assembling MKK4–JNK3α2 signaling complex. Biochemistry 50:10520–10529

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhan X, Kaoud TS, Kook S, Dalby KN, Gurevich VV (2013) JNK3 binding to arrestin-3 differentially affects the recruitment of upstream MAP kinase kinases. J Biol Chem 288:28535–28547

    Google Scholar 

  • Zhang QG, Wang XT, Han D, Yin XH, Zhang GY, Xu TL (2006) Akt inhibits MLK3/JNK3 signaling by inactivating Rac1: a protective mechanism against ischemic brain injury. J Neurochem 98:1886–1898

    CAS  PubMed  Google Scholar 

  • Zhang Z, Hao J, Zhao Z, Ben P, Fang F, Shi L, Gao Y, Liu J, Wen C, Luo L, Yin Z (2009) beta-Arrestins facilitate ubiquitin-dependent degradation of apoptosis signal-regulating kinase 1 (ASK1) and attenuate H2O2-induced apoptosis. Cell Signal 21:1195–1206

    CAS  PubMed  Google Scholar 

  • Zhang TL, Fu JL, Geng Z, Yang JJ, Sun XJ (2012) The neuroprotective effect of losartan through inhibiting AT1/ASK1/MKK4/JNK3 pathway following cerebral I/R in rat hippocampal CA1 region. CNS Neurosci Ther 18:981–987

    CAS  PubMed  Google Scholar 

  • Zhao J, Pei DS, Zhang QG, Zhang GY (2007) Down-regulation Cdc42 attenuates neuronal apoptosis through inhibiting MLK3/JNK3 cascade during ischemic reperfusion in rat hippocampus. Cell Signal 19:831–843

    CAS  PubMed  Google Scholar 

  • Zhu YC, Zhu YZ, Moore PK (2006) The role of urotensin II in cardiovascular and renal physiology and diseases. Br J Pharmacol 148:884–901

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhuang T, Chen Q, Cho M-K, Vishnivetskiy SA, Iverson TI, Gurevich VV, Sanders CR (2013) Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin. Proc Natl Acad Sci USA 110:942–947

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenia V. Gurevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kook, S., Gurevich, V.V., Gurevich, E.V. (2014). Arrestins in Apoptosis. In: Gurevich, V. (eds) Arrestins - Pharmacology and Therapeutic Potential. Handbook of Experimental Pharmacology, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41199-1_16

Download citation

Publish with us

Policies and ethics