Skip to main content

Arrestin-Dependent Localization of Phosphodiesterases

  • Chapter
  • First Online:
Arrestins - Pharmacology and Therapeutic Potential

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 219))

Abstract

Many G-protein-coupled receptors trigger the synthesis of cAMP in order to transduce signals from the membrane into the cell cytoplasm. As stimulation of each receptor type results in a specific physiological outcome, compartmentalization of proteins that make, break, and are activated by cAMP underpin receptor-specific responses. Until 2002, it was thought that static compartmentalization of phosphodiesterase 4 (PDE4), conferred by N-terminal targeting sequences, was one way to shape intricate cAMP gradients that formed after receptor activation. Discovery of the PDE4–β-arrestin complex represented a major breakthrough in cAMP signaling, as it spurred the initial realization that PDE4s could be transported to sites of high cAMP to orchestrate destruction of the second messenger at the same time as the receptor’s signal to the G-protein is silenced. This chapter charts the scientific process that led to the discovery and characterization of the PDE4–β-arrestin interaction and discusses the known functions of this signaling complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamsen H, Baillie G, Ngai J, Vang T, Nika K, Ruppelt A, Mustelin T, Zaccolo M, Houslay M, Tasken K (2004) TCR- and CD28-mediated recruitment of phosphodiesterase 4 to lipid rafts potentiates TCR signaling. J Immunol 173:4847–4858

    CAS  PubMed  Google Scholar 

  • Ahmed MR, Zhan X, Song X, Kook S, Gurevich VV, Gurevich EV (2011) Ubiquitin ligase parkin promotes Mdm2-arrestin interaction but inhibits arrestin ubiquitination. Biochemistry 50:3749–3763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arp J, Kirchhof MG, Baroja ML, Nazarian SH, Chau TA, Strathdee CA, Ball EH, Madrenas J (2003) Regulation of T-cell activation by phosphodiesterase 4B2 requires its dynamic redistribution during immunological synapse formation. Mol Cell Biol 23:8042–8057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baillie GS (2009) Compartmentalized signalling: spatial regulation of cAMP by the action of compartmentalized phosphodiesterases. FEBS J 276:1790–1799

    Article  CAS  PubMed  Google Scholar 

  • Baillie GS, Houslay MD (2005) Arrestin times for compartmentalised cAMP signalling and phosphodiesterase-4 enzymes. Curr Opin Cell Biol 17:129–134

    Article  CAS  PubMed  Google Scholar 

  • Baillie GS, Huston E, Scotland G, Hodgkin M, Gall I, Peden AH, MacKenzie C, Houslay ES, Currie R, Pettitt TR, Walmsley AR, Wakelam MJ, Warwicker J, Houslay MD (2002) TAPAS-1, a novel microdomain within the unique N-terminal region of the PDE4A1 cAMP-specific phosphodiesterase that allows rapid, Ca2+-triggered membrane association with selectivity for interaction with phosphatidic acid. J Biol Chem 277:28298–28309

    Article  CAS  PubMed  Google Scholar 

  • Baillie GS, Sood A, McPhee I, Gall I, Perry SJ, Lefkowitz RJ, Houslay MD (2003) beta-Arrestin-mediated PDE4 cAMP phosphodiesterase recruitment regulates beta-adrenoceptor switching from Gs to Gi. Proc Natl Acad Sci USA 100:940–945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baillie GS, Adams DR, Bhari N, Houslay TM, Vadrevu S, Meng D, Li X, Dunlop A, Milligan G, Bolger GB, Klussmann E, Houslay MD (2007) Mapping binding sites for the PDE4D5 cAMP-specific phosphodiesterase to the N- and C-domains of beta-arrestin using spot-immobilized peptide arrays. Biochem J 404:71–80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beard MB, O’Connell JC, Bolger GB, Houslay MD (1999) The unique N-terminal domain of the cAMP phosphodiesterase PDE4D4 allows for interaction with specific SH3 domains. FEBS Lett 460:173–177

    Article  CAS  PubMed  Google Scholar 

  • Beasley R, Pearce N, Crane J, Burgess C (1999) Beta-agonists: what is the evidence that their use increases the risk of asthma morbidity and mortality? J Allergy Clin Immunol 104:S18–S30

    Article  CAS  PubMed  Google Scholar 

  • Billington CK, Le Jeune IR, Young KW, Hall IP (2008) A major functional role for phosphodiesterase 4D5 in human airway smooth muscle cells. Am J Respir Cell Mol Biol 38:1–7

    Article  CAS  PubMed  Google Scholar 

  • Bjorgo E, Tasken K (2006) Role of cAMP phosphodiesterase 4 in regulation of T-cell function. Crit Rev Immunol 26:443–451

    Article  PubMed  Google Scholar 

  • Bjorgo E, Solheim SA, Abrahamsen H, Baillie GS, Brown KM, Berge T, Okkenhaug K, Houslay MD, Tasken K (2010) Cross talk between phosphatidylinositol 3-kinase and cyclic AMP (cAMP)-protein kinase a signaling pathways at the level of a protein kinase B/beta-arrestin/cAMP phosphodiesterase 4 complex. Mol Cell Biol 30:1660–1672

    Article  PubMed Central  PubMed  Google Scholar 

  • Bjorgo E, Moltu K, Tasken K (2011) Phosphodiesterases as targets for modulating T-cell responses. Handb Exp Pharmacol:345–363

    Google Scholar 

  • Bohn LM, Gainetdinov RR, Sotnikova TD, Medvedev IO, Lefkowitz RJ, Dykstra LA, Caron MG (2003) Enhanced rewarding properties of morphine, but not cocaine, in beta(arrestin)-2 knock-out mice. J Neurosci 23:10265–10273

    CAS  PubMed  Google Scholar 

  • Bolger GB, McCahill A, Yarwood SJ, Steele MR, Warwicker J, Houslay MD (2002) Delineation of RAID1, the RACK1 interaction domain located within the unique N-terminal region of the cAMP-specific phosphodiesterase, PDE4D5. BMC Biochem 3:24

    Article  PubMed Central  PubMed  Google Scholar 

  • Bolger GB, McCahill A, Huston E, Cheung YF, McSorley T, Baillie GS, Houslay MD (2003a) The unique amino-terminal region of the PDE4D5 cAMP phosphodiesterase isoform confers preferential interaction with beta-arrestins. J Biol Chem 278:49230–49238

    Article  CAS  PubMed  Google Scholar 

  • Bolger GB, Peden AH, Steele MR, MacKenzie C, McEwan DG, Wallace DA, Huston E, Baillie GS, Houslay MD (2003b) Attenuation of the activity of the cAMP-specific phosphodiesterase PDE4A5 by interaction with the immunophilin XAP2. J Biol Chem 278:33351–33363

    Article  CAS  PubMed  Google Scholar 

  • Bolger GB, Baillie GS, Li X, Lynch MJ, Herzyk P, Mohamed A, Mitchell LH, McCahill A, Hundsrucker C, Klussmann E, Adams DR, Houslay MD (2006) Scanning peptide array analyses identify overlapping binding sites for the signalling scaffold proteins, beta-arrestin and RACK1, in cAMP-specific phosphodiesterase PDE4D5. Biochem J 398:23–36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bos JL (2006) Epac proteins: multi-purpose cAMP targets. Trends Biochem Sci 31:680–686

    Article  CAS  PubMed  Google Scholar 

  • Bradaia A, Berton F, Ferrari S, Luscher C (2005) beta-Arrestin2, interacting with phosphodiesterase 4, regulates synaptic release probability and presynaptic inhibition by opioids. Proc Natl Acad Sci USA 102:3034–3039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brunton LL, Hayes JS, Mayer SE (1981) Functional compartmentation of cyclic AMP and protein kinase in heart. Adv Cyclic Nucleotide Res 14:391–397

    CAS  PubMed  Google Scholar 

  • Collins DM, Murdoch H, Dunlop AJ, Charych E, Baillie GS, Wang Q, Herberg FW, Brandon N, Prinz A, Houslay MD (2008) Ndel1 alters its conformation by sequestering cAMP-specific phosphodiesterase-4D3 (PDE4D3) in a manner that is dynamically regulated through Protein Kinase A (PKA). Cell Signal 20:2356–2369

    Article  CAS  PubMed  Google Scholar 

  • Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511

    Article  CAS  PubMed  Google Scholar 

  • Cooper DM, Crossthwaite AJ (2006) Higher-order organization and regulation of adenylyl cyclases. Trends Pharmacol Sci 27:426–431

    Article  CAS  PubMed  Google Scholar 

  • Daaka Y, Luttrell LM, Lefkowitz RJ (1997) Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature 390:88–91

    Article  CAS  PubMed  Google Scholar 

  • Dasi FJ, Ortiz JL, Cortijo J, Morcillo EJ (2000) Histamine up-regulates phosphodiesterase 4 activity and reduces prostaglandin E2-inhibitory effects in human neutrophils. Inflamm Res 49:600–609

    Article  CAS  PubMed  Google Scholar 

  • Dastidar SG, Rajagopal D, Ray A (2007) Therapeutic benefit of PDE4 inhibitors in inflammatory diseases. Curr Opin Investig Drugs 8:364–372

    CAS  PubMed  Google Scholar 

  • Dodge-Kafka KL, Soughayer J, Pare GC, Carlisle Michel JJ, Langeberg LK, Kapiloff MS, Scott JD (2005) The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature 437:574–578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Edwards HV, Cameron RT, Baillie GS (2011) The emerging role of HSP20 as a multifunctional protective agent. Cell Signal 23:1447–1454

    Article  CAS  PubMed  Google Scholar 

  • Edwards HV, Christian F, Baillie GS (2012) cAMP: novel concepts in compartmentalised signalling. Semin Cell Dev Biol 23:181–190

    Article  CAS  PubMed  Google Scholar 

  • Fabbri LM, Beghe B, Yasothan U, Kirkpatrick P (2010) Roflumilast. Nat Rev Drug Discov 9:761–762

    Article  CAS  PubMed  Google Scholar 

  • Finney PA, Belvisi MG, Donnelly LE, Chuang TT, Mak JC, Scorer C, Barnes PJ, Adcock IM, Giembycz MA (2000) Albuterol-induced downregulation of Gsalpha accounts for pulmonary beta(2)-adrenoceptor desensitization in vivo. J Clin Invest 106:125–135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Finney PA, Donnelly LE, Belvisi MG, Chuang TT, Birrell M, Harris A, Mak JC, Scorer C, Barnes PJ, Adcock IM, Giembycz MA (2001) Chronic systemic administration of salmeterol to rats promotes pulmonary beta(2)-adrenoceptor desensitization and down-regulation of G(s alpha). Br J Pharmacol 132:1261–1270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG (2004) Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci 27:107–144

    Article  CAS  PubMed  Google Scholar 

  • Giembycz MA (1996) Phosphodiesterase 4 and tolerance to beta 2-adrenoceptor agonists in asthma. Trends Pharmacol Sci 17:331–336

    Article  CAS  PubMed  Google Scholar 

  • Giembycz MA, Newton R (2006) Beyond the dogma: novel beta2-adrenoceptor signalling in the airways. Eur Respir J 27:1286–1306

    Article  CAS  PubMed  Google Scholar 

  • Grange M, Sette C, Cuomo M, Conti M, Lagarde M, Prigent AF, Nemoz G (2000) The cAMP-specific phosphodiesterase PDE4D3 is regulated by phosphatidic acid binding. Consequences for cAMP signaling pathway and characterization of a phosphatidic acid binding site. J Biol Chem 275:33379–33387

    Article  CAS  PubMed  Google Scholar 

  • Hansen G, Jin S, Umetsu DT, Conti M (2000) Absence of muscarinic cholinergic airway responses in mice deficient in the cyclic nucleotide phosphodiesterase PDE4D. Proc Natl Acad Sci USA 97:6751–6756

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Houslay MD, Schafer P, Zhang KY (2005) Keynote review: phosphodiesterase-4 as a therapeutic target. Drug Discov Today 10:1503–1519

    Article  CAS  PubMed  Google Scholar 

  • Hu A, Nino G, Grunstein JS, Fatma S, Grunstein MM (2008) Prolonged heterologous beta2-adrenoceptor desensitization promotes proasthmatic airway smooth muscle function via PKA/ERK1/2-mediated phosphodiesterase-4 induction. Am J Physiol Lung Cell Mol Physiol 294:L1055–L1067

    Article  CAS  PubMed  Google Scholar 

  • Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824

    CAS  PubMed  Google Scholar 

  • Le Jeune IR, Shepherd M, Van Heeke G, Houslay MD, Hall IP (2002) Cyclic AMP-dependent transcriptional up-regulation of phosphodiesterase 4D5 in human airway smooth muscle cells. Identification and characterization of a novel PDE4D5 promoter. J Biol Chem 277:35980–35989

    Article  PubMed  Google Scholar 

  • Ledbetter JA, Parsons M, Martin PJ, Hansen JA, Rabinovitch PS, June CH (1986) Antibody binding to CD5 (Tp67) and Tp44 T cell surface molecules: effects on cyclic nucleotides, cytoplasmic free calcium, and cAMP-mediated suppression. J Immunol 137:3299–3305

    CAS  PubMed  Google Scholar 

  • Lee JH, Richter W, Namkung W, Kim KH, Kim E, Conti M, Lee MG (2007) Dynamic regulation of cystic fibrosis transmembrane conductance regulator by competitive interactions of molecular adaptors. J Biol Chem 282:10414–10422

    Article  CAS  PubMed  Google Scholar 

  • Li X, Baillie GS, Houslay MD (2009a) Mdm2 directs the ubiquitination of beta-arrestin-sequestered cAMP phosphodiesterase-4D5. J Biol Chem 284:16170–16182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Li H, Liu X, Bao G, Tao Y, Wu Z, Xia P, Wu C, Li B, Ma L (2009b) Regulation of amygdalar PKA by beta-arrestin-2/phosphodiesterase-4 complex is critical for fear conditioning. Proc Natl Acad Sci USA 106:21918–21923

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lynch MJ, Baillie GS, Mohamed A, Li X, Maisonneuve C, Klussmann E, van Heeke G, Houslay MD (2005) RNA silencing identifies PDE4D5 as the functionally relevant cAMP phosphodiesterase interacting with beta arrestin to control the protein kinase A/AKAP79-mediated switching of the beta2-adrenergic receptor to activation of ERK in HEK293B2 cells. J Biol Chem 280:33178–33189

    Article  CAS  PubMed  Google Scholar 

  • Lynch MJ, Baillie GS, Houslay MD (2007) cAMP-specific phosphodiesterase-4D5 (PDE4D5) provides a paradigm for understanding the unique non-redundant roles that PDE4 isoforms play in shaping compartmentalized cAMP cell signalling. Biochem Soc Trans 35:938–941

    Article  CAS  PubMed  Google Scholar 

  • McCahill A, McSorley T, Huston E, Hill EV, Lynch MJ, Gall I, Keryer G, Lygren B, Tasken K, van Heeke G, Houslay MD (2005) In resting COS1 cells a dominant negative approach shows that specific, anchored PDE4 cAMP phosphodiesterase isoforms gate the activation, by basal cyclic AMP production, of AKAP-tethered protein kinase A type II located in the centrosomal region. Cell Signal 17:1158–1173

    Article  CAS  PubMed  Google Scholar 

  • Mehats C, Jin SL, Wahlstrom J, Law E, Umetsu DT, Conti M (2003) PDE4D plays a critical role in the control of airway smooth muscle contraction. FASEB J 17:1831–1841

    Article  CAS  PubMed  Google Scholar 

  • Menco BP (2005) The fine-structural distribution of G-protein receptor kinase 3, beta-arrestin-2, Ca2+/calmodulin-dependent protein kinase II and phosphodiesterase PDE1C2, and a Cl(-)-cotransporter in rodent olfactory epithelia. J Neurocytol 34:11–36

    Article  CAS  PubMed  Google Scholar 

  • Millar JK, Pickard BS, Mackie S, James R, Christie S, Buchanan SR, Malloy MP, Chubb JE, Huston E, Baillie GS, Thomson PA, Hill EV, Brandon NJ, Rain JC, Camargo LM, Whiting PJ, Houslay MD, Blackwood DH, Muir WJ, Porteous DJ (2005) DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science 310:1187–1191

    Article  CAS  PubMed  Google Scholar 

  • Miro X, Perez-Torres S, Puigdomenech P, Palacios JM, Mengod G (2002) Differential distribution of PDE4D splice variant mRNAs in rat brain suggests association with specific pathways and presynaptical localization. Synapse 45:259–269

    Article  CAS  PubMed  Google Scholar 

  • Nelson HS, Weiss ST, Bleecker ER, Yancey SW, Dorinsky PM (2006) The Salmeterol Multicenter Asthma Research Trial: a comparison of usual pharmacotherapy for asthma or usual pharmacotherapy plus salmeterol. Chest 129:15–26

    Article  CAS  PubMed  Google Scholar 

  • Nino G, Hu A, Grunstein JS, Grunstein MM (2009) Mechanism regulating proasthmatic effects of prolonged homologous beta2-adrenergic receptor desensitization in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 297:L746–L757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nino G, Hu A, Grunstein JS, Grunstein MM (2010) Mechanism of glucocorticoid protection of airway smooth muscle from proasthmatic effects of long-acting beta2-adrenoceptor agonist exposure. J Allergy Clin Immunol 125:1020–1027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Donnell JM, Zhang HT (2004) Antidepressant effects of inhibitors of cAMP phosphodiesterase (PDE4). Trends Pharmacol Sci 25:158–163

    Article  PubMed  Google Scholar 

  • Page CP, Spina D (2012) Selective PDE inhibitors as novel treatments for respiratory diseases. Curr Opin Pharmacol 12:275–286

    Article  CAS  PubMed  Google Scholar 

  • Perez-Torres S, Miro X, Palacios JM, Cortes R, Puigdomenech P, Mengod G (2000) Phosphodiesterase type 4 isozymes expression in human brain examined by in situ hybridization histochemistry and[3H]rolipram binding autoradiography. Comparison with monkey and rat brain. J Chem Neuroanat 20:349–374

    Article  CAS  PubMed  Google Scholar 

  • Perry SJ, Baillie GS, Kohout TA, McPhee I, Magiera MM, Ang KL, Miller WE, McLean AJ, Conti M, Houslay MD, Lefkowitz RJ (2002) Targeting of cyclic AMP degradation to beta 2-adrenergic receptors by beta-arrestins. Science 298:834–836

    Article  CAS  PubMed  Google Scholar 

  • Richter W, Day P, Agrawal R, Bruss MD, Granier S, Wang YL, Rasmussen SG, Horner K, Wang P, Lei T, Patterson AJ, Kobilka B, Conti M (2008) Signaling from beta1- and beta2-adrenergic receptors is defined by differential interactions with PDE4. EMBO J 27:384–393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rutten K, Misner DL, Works M, Blokland A, Novak TJ, Santarelli L, Wallace TL (2008) Enhanced long-term potentiation and impaired learning in phosphodiesterase 4D-knockout (PDE4D) mice. Eur J Neurosci 28:625–632

    Article  PubMed  Google Scholar 

  • Sachs BD, Baillie GS, McCall JR, Passino MA, Schachtrup C, Wallace DA, Dunlop AJ, MacKenzie KF, Klussmann E, Lynch MJ, Sikorski SL, Nuriel T, Tsigelny I, Zhang J, Houslay MD, Chao MV, Akassoglou K (2007) p75 neurotrophin receptor regulates tissue fibrosis through inhibition of plasminogen activation via a PDE4/cAMP/PKA pathway. J Cell Biol 177:1119–1132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schafe GE, Nadel NV, Sullivan GM, Harris A, LeDoux JE (1999) Memory consolidation for contextual and auditory fear conditioning is dependent on protein synthesis, PKA, and MAP kinase. Learn Mem 6:97–110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seo J, Tsakem EL, Breitman M, Gurevich VV (2011) Identification of arrestin-3-specific residues necessary for JNK3 activation. J Biol Chem 286:27894–27901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Serrels B, Sandilands E, Serrels A, Baillie G, Houslay MD, Brunton VG, Canel M, Machesky LM, Anderson KI, Frame MC (2010) A complex between FAK, RACK1, and PDE4D5 controls spreading initiation and cancer cell polarity. Curr Biol 20:1086–1092

    Article  CAS  PubMed  Google Scholar 

  • Serrels B, Sandilands E, Frame MC (2011) Signaling of the direction-sensing FAK/RACK1/PDE4D5 complex to the small GTPase Rap1. Small GTPases 2:54–61

    Article  PubMed Central  PubMed  Google Scholar 

  • Seybold J, Newton R, Wright L, Finney PA, Suttorp N, Barnes PJ, Adcock IM, Giembycz MA (1998) Induction of phosphodiesterases 3B, 4A4, 4D1, 4D2, and 4D3 in Jurkat T-cells and in human peripheral blood T-lymphocytes by 8-bromo-cAMP and Gs-coupled receptor agonists. Potential role in beta2-adrenoreceptor desensitization. J Biol Chem 273:20575–20588

    Article  CAS  PubMed  Google Scholar 

  • Shenoy SK, Lefkowitz RJ (2011) beta-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci 32:521–533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sin YY, Edwards HV, Li X, Day JP, Christian F, Dunlop AJ, Adams DR, Zaccolo M, Houslay MD, Baillie GS (2011) Disruption of the cyclic AMP phosphodiesterase-4 (PDE4)-HSP20 complex attenuates the beta-agonist induced hypertrophic response in cardiac myocytes. J Mol Cell Cardiol 50:872–883

    Article  CAS  PubMed  Google Scholar 

  • Skalhegg BS, Landmark BF, Doskeland SO, Hansson V, Lea T, Jahnsen T (1992) Cyclic AMP-dependent protein kinase type I mediates the inhibitory effects of 3',5'-cyclic adenosine monophosphate on cell replication in human T lymphocytes. J Biol Chem 267:15707–15714

    CAS  PubMed  Google Scholar 

  • Smith KJ, Baillie GS, Hyde EI, Li X, Houslay TM, McCahill A, Dunlop AJ, Bolger GB, Klussmann E, Adams DR, Houslay MD (2007) 1H NMR structural and functional characterisation of a cAMP-specific phosphodiesterase-4D5 (PDE4D5) N-terminal region peptide that disrupts PDE4D5 interaction with the signalling scaffold proteins, beta-arrestin and RACK1. Cell Signal 19:2612–2624

    Article  CAS  PubMed  Google Scholar 

  • Song X, Coffa S, Fu H, Gurevich VV (2009) How does arrestin assemble MAPKs into a signaling complex? J Biol Chem 284:685–695

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spina D (2008) PDE4 inhibitors: current status. Br J Pharmacol 155:308–315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stefan E, Wiesner B, Baillie GS, Mollajew R, Henn V, Lorenz D, Furkert J, Santamaria K, Nedvetsky P, Hundsrucker C, Beyermann M, Krause E, Pohl P, Gall I, MacIntyre AN, Bachmann S, Houslay MD, Rosenthal W, Klussmann E (2007) Compartmentalization of cAMP-dependent signaling by phosphodiesterase-4D is involved in the regulation of vasopressin-mediated water reabsorption in renal principal cells. J Am Soc Nephrol 18:199–212

    Article  CAS  PubMed  Google Scholar 

  • Taylor SS, Ilouz R, Zhang P, Kornev AP (2012) Assembly of allosteric macromolecular switches: lessons from PKA. Nat Rev Mol Cell Biol 13:646–658

    Article  CAS  PubMed  Google Scholar 

  • Terrenoire C, Houslay MD, Baillie GS, Kass RS (2009) The cardiac IKs potassium channel macromolecular complex includes the phosphodiesterase PDE4D3. J Biol Chem 284:9140–9146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Torphy TJ (1998) Phosphodiesterase isozymes: molecular targets for novel antiasthma agents. Am J Respir Crit Care Med 157:351–370

    Article  CAS  PubMed  Google Scholar 

  • Torphy TJ, Zhou HL, Foley JJ, Sarau HM, Manning CD, Barnette MS (1995) Salbutamol up-regulates PDE4 activity and induces a heterologous desensitization of U937 cells to prostaglandin E2. Implications for the therapeutic use of beta-adrenoceptor agonists. J Biol Chem 270:23598–23604

    Article  CAS  PubMed  Google Scholar 

  • Vang T, Torgersen KM, Sundvold V, Saxena M, Levy FO, Skalhegg BS, Hansson V, Mustelin T, Tasken K (2001) Activation of the COOH-terminal Src kinase (Csk) by cAMP-dependent protein kinase inhibits signaling through the T cell receptor. J Exp Med 193:497–507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Verghese MW, McConnell RT, Lenhard JM, Hamacher L, Jin SL (1995) Regulation of distinct cyclic AMP-specific phosphodiesterase (phosphodiesterase type 4) isozymes in human monocytic cells. Mol Pharmacol 47:1164–1171

    CAS  PubMed  Google Scholar 

  • Willoughby D, Baillie GS, Lynch MJ, Ciruela A, Houslay MD, Cooper DM (2007) Dynamic regulation, desensitization, and cross-talk in discrete subcellular microdomains during beta2-adrenoceptor and prostanoid receptor cAMP signaling. J Biol Chem 282:34235–34249

    Article  CAS  PubMed  Google Scholar 

  • Xavier R, Brennan T, Li Q, McCormack C, Seed B (1998) Membrane compartmentation is required for efficient T cell activation. Immunity 8:723–732

    Article  CAS  PubMed  Google Scholar 

  • Yarwood SJ, Steele MR, Scotland G, Houslay MD, Bolger GB (1999) The RACK1 signaling scaffold protein selectively interacts with the cAMP-specific phosphodiesterase PDE4D5 isoform. J Biol Chem 274:14909–14917

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George S. Baillie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Willis, M.J., Baillie, G.S. (2014). Arrestin-Dependent Localization of Phosphodiesterases. In: Gurevich, V. (eds) Arrestins - Pharmacology and Therapeutic Potential. Handbook of Experimental Pharmacology, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41199-1_15

Download citation

Publish with us

Policies and ethics