Skip to main content

Arrestin-Dependent Activation of JNK Family Kinases

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 219))

Abstract

The activity of all mitogen-activated protein kinases (MAPKs) is stimulated via phosphorylation by upstream MAPK kinases (MAPKK), which are in their turn activated via phosphorylation by MAPKK kinases (MAPKKKs). The cells ensure the specificity of signaling in these cascades by employing a variety of scaffolding proteins that bind matching MAPKKKs, MAPKKs, and MAPKs. All four vertebrate arrestin subtypes bind JNK3, but only arrestin-3 serves as a scaffold, promoting JNK3 activation in intact cells. Arrestin-3-mediated JNK3 activation does not depend on arrestin-3 interaction with G protein-coupled receptors (GPCRs), as demonstrated by the ability of some arrestin mutants that cannot bind receptors to activate JNK3, whereas certain mutants with enhanced GPCR binding fail to promote JNK3 activation. Recent findings suggest that arrestin-3 directly binds both MAPKKs necessary for JNK activation and facilitates JNK3 phosphorylation at both Thr (by MKK4) and Tyr (by MKK7). JNK3 is expressed in a limited set of cell types, whereas JNK1 and JNK2 isoforms are as ubiquitous as arrestin-3. Recent study showed that arrestin-3 facilitates the activation of JNK1 and JNK2, scaffolding MKK4/7-JNK1/2/3 signaling complexes. In all cases, arrestin-3 acts by bringing the kinases together: JNK phosphorylation shows biphasic dependence on arrestin-3, being enhanced at lower and suppressed at supraoptimal concentrations. Thus, arrestin-3 regulates the activity of multiple JNK isoforms, suggesting that it might play a role in survival and apoptosis of all cell types.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Different systems of arrestin names are used in the field and in this book. We use systematic names of arrestin proteins: arrestin-1 (historic names S-antigen, 48 kDa protein, visual or rod arrestin), arrestin-2 (β-arrestin or β-arrestin1), arrestin-3 (β-arrestin2 or hTHY-ARRX), and arrestin-4 (cone or X-arrestin; for unclear reasons, its gene is called “arrestin-3” in the HUGO database).

References

  • Ahmed MR, Zhan X, Song X, Kook S, Gurevich VV, Gurevich EV (2011) Ubiquitin ligase parkin promotes Mdm2-arrestin interaction but inhibits arrestin ubiquitination. Biochemistry 50:3749–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Attramadal H, Arriza JL, Aoki C, Dawson TM, Codina J, Kwatra MM, Snyder SH, Caron MG, Lefkowitz RJ (1992) Beta-arrestin2, a novel member of the arrestin/beta-arrestin gene family. J Biol Chem 267:17882–90

    CAS  PubMed  Google Scholar 

  • Barak LS, Ferguson SS, Zhang J, Caron MG (1997) A beta-arrestin/green fluorescent protein biosensor for detecting G protein-coupled receptor activation. J Biol Chem 272:27497–500

    Article  CAS  PubMed  Google Scholar 

  • Barr RK, Kendrick TS, Bogoyevich MA (2002) Identification of the critical features of a small peptide inhibitor of JNK activity. J Biol Chem 277:10987–97

    Article  CAS  PubMed  Google Scholar 

  • Bayburt TH, Vishnivetskiy SA, McLean M, Morizumi T, C-c H, Tesmer JJ, Ernst OP, Sligar SG, Gurevich VV (2011) Rhodopsin monomer is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. J Biol Chem 286:1420–8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bennett BL, Sasaki DT, Murray BW, O'Leary EC, Sakata ST, Xu W, Leisten JC, Motiwala A, Pierce S, Satoh Y, Bhagwat SS, Manning AM, Anderson DW (2001) SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci USA 98:13681–6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bogoyevitch MA, Kobe B (2006) Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Microbiol Mol Biol Rev 70:1061–95

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Borsello T, Clarke PG, Hirt L, Vercelli A, Repici M, Schorderet DF, Bogousslavsky J, Bonny C (2003) A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med 9:1180–6

    Article  CAS  PubMed  Google Scholar 

  • Bray D, Lay S (1997) Computer-based analysis of the binding steps in protein complex formation. Proc Natl Acad Sci USA 94:13493–8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Breitman M, Kook S, Gimenez LE, Lizama BN, Palazzo MC, Gurevich EV, Gurevich VV (2012) Silent scaffolds: inhibition of c-Jun N-terminal kinase 3 activity in the cell by a dominant-negative arrestin-3 mutant. J Biol Chem 287:19653–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown MD, Sacks DB (2009) Protein scaffolds in MAP kinase signalling. Cell Signal 21:462–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bruchas MR, Macey TA, Lowe JD, Chavkin C (2006) Kappa opioid receptor activation of p38 MAPK is GRK3- and arrestin-dependent in neurons and astrocytes. J Biol Chem 281:18081–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burack WR, Shaw AS (2000) Signal transduction: hanging on a scaffold. Curr Opin Cell Biol 12:211–6

    Article  CAS  PubMed  Google Scholar 

  • Buschmann T, Potapova O, Bar-Shira A, Ivanov VN, Fuchs SY, Henderson S, Fried VA, Minamoto T, Alarcon-Vargas D, Pincus MR, Gaarde WA, Holbrook NJ, Shiloh Y, Ronai Z (2001) Jun NH2-terminal kinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress. Mol Cell Biol 21:2743–54

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carboni S, Hiver A, Szyndralewiez C, Gaillard P, Gotteland JP, Vitte PA (2004) AS601245 (1,3-benzothiazol-2-yl (2-[[2-(3-pyridinyl) ethyl] amino]-4 pyrimidinyl) acetonitrile): a c-Jun NH2-terminal protein kinase inhibitor with neuroprotective properties. J Pharmacol Exp Ther 310:25–32

    Article  CAS  PubMed  Google Scholar 

  • Carman CV, Benovic JL (1998) G-protein-coupled receptors: turn-ons and turn-offs. Curr Opin Neurobiol 8:335–44

    Article  CAS  PubMed  Google Scholar 

  • Carter JM, Gurevich VV, Prossnitz ER, Engen JR (2005) Conformational differences between arrestin2 and pre-activated mutants as revealed by hydrogen exchange mass spectrometry. J Mol Biol 351:865–78

    Article  CAS  PubMed  Google Scholar 

  • Celver J, Vishnivetskiy SA, Chavkin C, Gurevich VV (2002) Conservation of the phosphate-sensitive elements in the arrestin family of proteins. J Biol Chem 277:9043–8

    Article  CAS  PubMed  Google Scholar 

  • Coffa S, Breitman M, Spiller BW, Gurevich VV (2011a) A single mutation in arrestin-2 prevents ERK1/2 activation by reducing c-Raf1 binding. Biochemistry 50:6951–8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coffa S, Breitman M, Hanson SM, Callaway K, Kook S, Dalby KN, Gurevich VV (2011b) The Effect of Arrestin Conformation on the Recruitment of c-Raf1, MEK1, and ERK1/2 Activation. PLoS One 6:e28723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–52

    Article  CAS  PubMed  Google Scholar 

  • Deng X, Xiao L, Lang W, Gao F, Ruvolo P, May WS Jr (2001) Novel role for JNK as a stress-activated Bcl2 kinase. J Biol Chem 276:23681–8

    Article  CAS  PubMed  Google Scholar 

  • Dhanasekaran DN, Kashef K, Lee CM, Xu H, Reddy EP (2007) Scaffold proteins of MAP-kinase modules. Oncogene 26:3185–202

    Article  CAS  PubMed  Google Scholar 

  • Ferrell JEJ (2000) What do scaffold proteins really do? Sci STKE 2000:pe1

    PubMed  Google Scholar 

  • Fuchs SY, Adler V, Pincus MR, Ronai Z (1998) MEKK1/JNK signaling stabilizes and activates p53. Proc Natl Acad Sci USA 95:10541–6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gimenez LE, Vishnivetskiy SA, Baameur F, Gurevich VV (2012) Manipulation of very few receptor discriminator residues greatly enhances receptor specificity of non-visual arrestins. J Biol Chem 287:29495–505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Good MC, Zalatan JG, Lim WA (2011) Scaffold proteins: hubs for controlling the flow of cellular information. Science 332:680–6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goodman OB Jr, Krupnick JG, Santini F, Gurevich VV, Penn RB, Gagnon AW, Keen JH, Benovic JL (1996) Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature 383:447–50

    Article  CAS  PubMed  Google Scholar 

  • Granzin J, Wilden U, Choe HW, Labahn J, Krafft B, Buldt G (1998) X-ray crystal structure of arrestin from bovine rod outer segments. Nature 391:918–21

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Whitmarsh AJ (2008) The {beta}-arrestin-2 scaffold protein promotes c-jun N-terminal kinase-3 activation by binding to its nonconserved N terminus. J Biol Chem 283:15903–11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta S, Barrett T, Whitmarsh AJ, Cavanagh J, Sluss HK, Dérijard B, Davis RJ (1996) Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J 15:2760–70

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gurevich VV (1998) The selectivity of visual arrestin for light-activated phosphorhodopsin is controlled by multiple nonredundant mechanisms. J Biol Chem 273:15501–6

    Article  CAS  PubMed  Google Scholar 

  • Gurevich VV, Benovic JL (1993) Visual arrestin interaction with rhodopsin: sequential multisite binding ensures strict selectivity towards light-activated phosphorylated rhodopsin. J Biol Chem 268:11628–38

    CAS  PubMed  Google Scholar 

  • Gurevich VV, Gurevich EV (2004) The molecular acrobatics of arrestin activation. Trends Pharmacol Sci 25:59–112

    Article  Google Scholar 

  • Gurevich EV, Gurevich VV (2006a) Arrestins are ubiquitous regulators of cellular signaling pathways. Genome Biol 7:236

    Article  PubMed Central  PubMed  Google Scholar 

  • Gurevich VV, Gurevich EV (2006b) The structural basis of arrestin-mediated regulation of G protein-coupled receptors. Pharmacol Ther 110:465–502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gurevich VV, Richardson RM, Kim CM, Hosey MM, Benovic JL (1993) Binding of wild type and chimeric arrestins to the m2 muscarinic cholinergic receptor. J Biol Chem 268:16879–82

    CAS  PubMed  Google Scholar 

  • Gurevich VV, Dion SB, Onorato JJ, Ptasienski J, Kim CM, Sterne-Marr R, Hosey MM, Benovic JL (1995) Arrestin interaction with G protein-coupled receptors. Direct binding studies of wild type and mutant arrestins with rhodopsin, b2-adrenergic, and m2 muscarinic cholinergic receptors. J Biol Chem 270:720–31

    Article  CAS  PubMed  Google Scholar 

  • Gurevich VV, Hanson SM, Song X, Vishnivetskiy SA, Gurevich EV (2011) The functional cycle of visual arrestins in photoreceptor cells. Prog Retin Eye Res 30:405–30

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Han M, Gurevich VV, Vishnivetskiy SA, Sigler PB, Schubert C (2001) Crystal structure of beta-arrestin at 1.9 A: possible mechanism of receptor binding and membrane translocation. Structure 9:869–80

    Article  CAS  PubMed  Google Scholar 

  • Hanson SM, Francis DJ, Vishnivetskiy SA, Klug CS, Gurevich VV (2006a) Visual arrestin binding to microtubules involves a distinct conformational change. J Biol Chem 281:9765–72

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson SM, Francis DJ, Vishnivetskiy SA, Kolobova EA, Hubbell WL, Klug CS, Gurevich VV (2006b) Differential interaction of spin-labeled arrestin with inactive and active phosphorhodopsin. Proc Natl Acad Sci USA 103:4900–5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson SM, Cleghorn WM, Francis DJ, Vishnivetskiy SA, Raman D, Song S, Nair KS, Slepak VZ, Klug CS, Gurevich VV (2007) Arrestin mobilizes signaling proteins to the cytoskeleton and redirects their activity. J Mol Biol 368:375–87

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirsch JA, Schubert C, Gurevich VV, Sigler PB (1999) The 2.8 A crystal structure of visual arrestin: a model for arrestin's regulation. Cell 97:257–69

    Article  CAS  PubMed  Google Scholar 

  • Hunot S, Vila M, Teismann P, Davis RJ, Hirsch EC, Przedborski S, Rakic P, Flavell RA (2004) JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA 101:665–70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karin M, Gallagher E (2005) From JNK to pay dirt: jun kinases, their biochemistry, physiology and clinical importance. IUBMB Life 57:283–95

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Vishnivetskiy SA, Van Eps N, Alexander NS, Cleghorn WM, Zhan X, Hanson SM, Morizumi T, Ernst OP, Meiler J, Gurevich VV, Hubbell WL (2012) Conformation of receptor-bound visual arrestin. Proc Natl Acad Sci USA 109:18407–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim YJ, Hofmann KP, Ernst OP, Scheerer P, Choe HW, Sommer ME (2013) Crystal structure of pre-activated arrestin p44. Nature 497:142–6

    Article  CAS  PubMed  Google Scholar 

  • Kook S, Zhan X, Kaoud TS, Dalby KN, Gurevich VV, Gurevich EV (2013) Arrestin-3 binds JNK1α1 and JNK2α2 and facilitates the activation of these ubiquitous JNK isoforms in cells via scaffolding. J Biol Chem 288:in revision

    Google Scholar 

  • Kortum RL, Lewis RE (2004) The molecular scaffold KSR1 regulates the proliferative and oncogenic potential of cells. Mol Cell Biol 24:4407–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuan CY, Whitmarsh AJ, Yang DD, Liao G, Schloemer AJ, Dong C, Bao J, Banasiak KJ, Haddad GG, Flavell RA, Davis RJ, Rakic P (2003) A critical role of neural-specific JNK3 for ischemic apoptosis. Proc Natl Acad Sci USA 100:15184–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laporte SA, Oakley RH, Zhang J, Holt JA, Ferguson SG, Caron MG, Barak LS (1999) The 2-adrenergic receptor/arrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Natl Acad Sci USA 96:3712–7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lawler S, Fleming Y, Goedert M, Cohen P (1998) Synergistic activation of SAPK1/JNK1 by two MAP kinase kinases in vitro. Curr Biol 8:1387–90

    Article  CAS  PubMed  Google Scholar 

  • Levchenko A, Bruck J, Sternberg PW (2000) Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proc Natl Acad Sci USA 97:5818–23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levchenko A, Bruck J, Sternberg PW (2004) Regulatory modules that generate biphasic signal response in biological systems. Syst Biol (Stevenage) 1:139–48

    Article  CAS  Google Scholar 

  • Li Z, McNulty DE, Marler KJ, Lim L, Hall C, Annan RS, Sacks DB (2005) QGAP1 promotes neurite outgrowth in a phosphorylation-dependent manner. J Biol Chem 280:13871–8

    Article  CAS  PubMed  Google Scholar 

  • Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, Della Rocca GJ, Lin F, Kawakatsu H, Owada K, Luttrell DK, Caron MG, Lefkowitz RJ (1999) Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 283:655–61

    Article  CAS  PubMed  Google Scholar 

  • Luttrell LM, Roudabush FL, Choy EW, Miller WE, Field ME, Pierce KL, Lefkowitz RJ (2001) Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci USA 98:2449–54

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McDonald PH, Chow CW, Miller WE, Laporte SA, Field ME, Lin FT, Davis RJ, Lefkowitz RJ (2000) Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290:1574–7

    Article  CAS  PubMed  Google Scholar 

  • Milano SK, Pace HC, Kim YM, Brenner C, Benovic JL (2002) Scaffolding functions of arrestin-2 revealed by crystal structure and mutagenesis. Biochemistry 41:3321–8

    Article  CAS  PubMed  Google Scholar 

  • Miller WE, McDonald PH, Cai SF, Field ME, Davis RJ, Lefkowitz RJ (2001) Identification of a motif in the carboxyl terminus of beta -arrestin2 responsible for activation of JNK3. J Biol Chem 276:27770–7

    Article  CAS  PubMed  Google Scholar 

  • Morfini GA, You YM, Pollema SL, Kaminska A, Liu K, Yoshioka K, Björkblom B, Coffey ET, Bagnato C, Han D, Huang CF, Banker G, Pigino G, Brady ST (2009) Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin. Nat Neurosci 12:864–71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morishima Y, Gotoh Y, Zieg J, Barrett T, Takano H, Flavell R, Davis RJ, Shirasaki Y, Greenberg ME (2001) Beta-amyloid induces neuronal apoptosis via a mechanism that involves the c-Jun N-terminal kinase pathway and the induction of Fas ligand. J Neurosci 21:7551–60

    CAS  PubMed  Google Scholar 

  • Morishima-Kawashima M, Kosik KS (1996) The pool of map kinase associated with microtubules is small but constitutively active. Mol Biol Cell 7:893–905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Palczewski K, Pulvermuller A, Buczylko J, Hofmann KP (1991) Phosphorylated rhodopsin and heparin induce similar conformational changes in arrestin. J Biol Chem 266:18649–54

    CAS  PubMed  Google Scholar 

  • Resnick L, Fennell M (2004) Targeting JNK3 for the treatment of neurodegenerative disorders. Drug Discov Today 9:932–9

    Article  CAS  PubMed  Google Scholar 

  • Sabapathy K (2012) Role of the JNK pathway in human diseases. Prog Mol Biol Transl Sci 106:145–69

    Article  CAS  PubMed  Google Scholar 

  • Scapin G, Patel SB, Lisnock J, Becker JW, LoGrasso PV (2003) The structure of JNK3 in complex with small molecule inhibitors: structural basis for potency and selectivity. Chem Biol 10:705–12

    Article  CAS  PubMed  Google Scholar 

  • Schleicher A, Kuhn H, Hofmann KP (1989) Kinetics, binding constant, and activation energy of the 48-kDa protein-rhodopsin complex by extra-metarhodopsin II. Biochemistry 28:1770–5

    Article  CAS  PubMed  Google Scholar 

  • Schlosshauer M, Baker D (2004) Realistic protein–protein association rates from a simple diffusional model neglecting long-range interactions, free energy barriers, and landscape ruggedness. Protein Sci 13:1660–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scott MG, Le Rouzic E, Perianin A, Pierotti V, Enslen H, Benichou S, Marullo S, Benmerah A (2002) Differential nucleocytoplasmic shuttling of beta-arrestins. Characterization of a leucine-rich nuclear export signal in beta-arrestin2. J Biol Chem 277:37693–701

    Article  CAS  PubMed  Google Scholar 

  • Seo J, Tsakem EL, Breitman M, Gurevich VV (2011) Identification of arrestin-3-specific residues necessary for JNK3 activation. J Biol Chem 286:27894–901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shukla AK, Manglik A, Kruse AC, Xiao K, Reis RI, Tseng WC, Staus DP, Hilger D, Uysal S, Huang LY, Paduch M, Tripathi-Shukla P, Koide A, Koide S, Weis WI, Kossiakoff AA, Kobilka BK, Lefkowitz RJ (2013) Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497:137–41

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song X, Raman D, Gurevich EV, Vishnivetskiy SA, Gurevich VV (2006) Visual and both non-visual arrestins in their “inactive” conformation bind JNK3 and Mdm2 and relocalize them from the nucleus to the cytoplasm. J Biol Chem 281:21491–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song X, Gurevich EV, Gurevich VV (2007) Cone arrestin binding to JNK3 and Mdm2: conformational preference and localization of interaction sites. J Neurochem 103:1053–62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song X, Coffa S, Fu H, Gurevich VV (2009) How does arrestin assemble MAPKs into a signaling complex? J Biol Chem 284:685–95

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sterne-Marr R, Gurevich VV, Goldsmith P, Bodine RC, Sanders C, Donoso LA, Benovic JL (1993) Polypeptide variants of beta-arrestin and arrestin3. J Biol Chem 268:15640–8

    CAS  PubMed  Google Scholar 

  • Sutton RB, Vishnivetskiy SA, Robert J, Hanson SM, Raman D, Knox BE, Kono M, Navarro J, Gurevich VV (2005) Crystal structure of cone arrestin at 2.3Å: evolution of receptor specificity. J Mol Biol 354:1069–80

    Article  CAS  PubMed  Google Scholar 

  • Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA, Davis RJ (2000) Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288:870–4

    Article  CAS  PubMed  Google Scholar 

  • Tournier C, Dong C, Turner TK, Jones SN, Flavell RA, Davis RJ (2001) MKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines. Genes Dev 15:1419–26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vishnivetskiy SA, Hirsch JA, Velez MG, Gurevich YV, Gurevich VV (2002) Transition of arrestin into the active receptor-binding state requires an extended interdomain hinge. J Biol Chem 277:43961–7

    Article  CAS  PubMed  Google Scholar 

  • Vishnivetskiy SA, Hosey MM, Benovic JL, Gurevich VV (2004) Mapping the arrestin-receptor interface: structural elements responsible for receptor specificity of arrestin proteins. J Biol Chem 279:1262–8

    Article  CAS  PubMed  Google Scholar 

  • Vishnivetskiy SA, Gimenez LE, Francis DJ, Hanson SM, Hubbell WL, Klug CS, Gurevich VV (2011) Few residues within an extensive binding interface drive receptor interaction and determine the specificity of arrestin proteins. J Biol Chem 286:24288–99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vishnivetskiy SA, Baameur F, Findley KR, Gurevich VV (2013) Critical role of the central 139-loop in stability and binding selectivity of arrestin-1. J Biol Chem 288:11741–50

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Wu Y, Ge X, Ma L, Pei G (2003) Subcellular localization of beta-arrestins is determined by their intact N domain and the nuclear export signal at the C terminus. J Biol Chem 278:11648–53

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Shi L, Xie Y, Ma C, Li W, Su X, Huang S, Chen R, Zhu Z, Mao Z, Han Y, Li M (2004) SP600125, a new JNK inhibitor, protects dopaminergic neurons in the MPTP model of Parkinson’s disease. Neurosci Res 48:195–202

    Article  CAS  PubMed  Google Scholar 

  • Weston CR, Davis RJ (2007) The JNK signal transduction pathway. Curr Opin Cell Biol 19:142–9

    Article  CAS  PubMed  Google Scholar 

  • Xiao K, McClatchy DB, Shukla AK, Zhao Y, Chen M, Shenoy SK, Yates JR, Lefkowitz RJ (2007) Functional specialization of beta-arrestin interactions revealed by proteomic analysis. Proc Natl Acad Sci USA 104:12011–6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto K, Ichijo H, Korsmeyer SJ (1999) BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol Cell Biol 19:8469–78

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang DD, Kuan CY, Whitmarsh AJ, Rincón M, Zheng TS, Davis RJ, Rakic P, Flavell RA (1997) Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389:865–70

    Article  CAS  PubMed  Google Scholar 

  • Yoon SO, Park DJ, Ryu JC, Ozer HG, Tep C, Shin YJ, Lim TH, Pastorino L, Kunwar AJ, Walton JC, Nagahara AH, Lu KP, Nelson RJ, Tuszynski MH, Huang K (2013) JNK3 perpetuates metabolic stress induced by Aβ peptides. Neuron 75:824–37

    Article  Google Scholar 

  • Zhan X, Kaoud TS, Kook S, Dalby KN, Gurevich VV (2013) JNK3 binding to arrestin-3 differentially affects the recruitment of upstream MAP kinase kinases. J Biol Chem 288:28535–28547

    Google Scholar 

  • Zhan X, Gimenez LE, Gurevich VV, Spiller BW (2011a) Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual arrestins. J Mol Biol 406:467–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhan X, Kaoud TS, Dalby KN, Gurevich VV (2011b) Non-visual arrestins function as simple scaffolds assembling MKK4–JNK3α2 signaling complex. Biochemistry 50:10520–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu X, Raina AK, Rottkamp CA, Aliev G, Perry G, Boux H, Smith MA (2001) Activation and redistribution of c-jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer’s disease. J Neurochem 76:435–41

    Article  CAS  PubMed  Google Scholar 

  • Zhuang T, Chen Q, Cho M-K, Vishnivetskiy SA, Iverson TI, Gurevich VV, Hubbell WL (2013) Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin. Proc Natl Acad Sci USA 110:942–7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vsevolod V. Gurevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhan, X., Kook, S., Gurevich, E.V., Gurevich, V.V. (2014). Arrestin-Dependent Activation of JNK Family Kinases. In: Gurevich, V. (eds) Arrestins - Pharmacology and Therapeutic Potential. Handbook of Experimental Pharmacology, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41199-1_13

Download citation

Publish with us

Policies and ethics