Skip to main content

Arrestin-Dependent Activation of ERK and Src Family Kinases

  • Chapter
  • First Online:
Arrestins - Pharmacology and Therapeutic Potential

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 219))

Abstract

The four members of the mammalian arrestin family, two visual and two nonvisual, share the property of stimulus-dependent docking to G protein-coupled receptors. This conformational selectivity permits them to function in receptor desensitization, as arrestin binding sterically inhibits G protein coupling. The two nonvisual arrestins further act as adapter proteins, linking receptors to the clathrin-dependent endocytic machinery and regulating receptor sequestration, intracellular trafficking, recycling, and degradation. Arrestins also function as ligand-regulated scaffolds, recruiting catalytically active proteins into receptor-based multiprotein “signalsome” complexes. Arrestin binding thus marks the transition from a transient G protein-coupled state on the plasma membrane to a persistent arrestin-coupled state that continues to signal as the receptor internalizes. Two of the earliest discovered and most studied arrestin-dependent signaling pathways involve regulation of Src family nonreceptor tyrosine kinases and the ERK1/2 mitogen-activated kinase cascade. In each case, arrestin scaffolding imposes constraints on kinase activity that dictate signal duration and substrate specificity. Evidence suggests that arrestin-bound ERK1/2 and Src not only play regulatory roles in receptor desensitization and trafficking but also mediate longer term effects on cell growth, migration, proliferation, and survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BRET:

Bioluminescence resonance energy transfer

EGF:

Epidermal growth factor

ERK1/2:

Extracellular signal-regulated kinases 1 and 2

GPCR:

G protein-coupled receptor

GRK:

GPCR kinase

JNK/SAPK:

c-Jun N-terminal kinase/stress-activated protein kinase

LPA:

Lysophosphatidic acid

MAPK:

Mitogen-activated protein kinase

MEF:

Murine embryo fibroblast

PAR:

Protease-activated receptor

PK:

Protein kinase

PLC:

Phospholipase C

PTH:

Parathyroid hormone

SH:

Src homology

References

  • Ahn S, Maudsley S, Luttrell LM et al (1999) Src-mediated tyrosine phosphorylation of dynamin is required for beta2-adrenergic receptor internalization and mitogen-activated protein kinase signaling. J Biol Chem 274:1185–1188

    CAS  PubMed  Google Scholar 

  • Ahn S, Kim J, Lucaveche CL et al (2002) Src-dependent tyrosine phosphorylation regulates dynamin self-assembly and ligand-induced endocytosis of the epidermal growth factor receptor. J Biol Chem 277:26642–26651

    CAS  PubMed  Google Scholar 

  • Ahn S, Shenoy SK, Wei H et al (2004a) Differential kinetic and spatial patterns of beta-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J Biol Chem 279:35518–35525

    CAS  PubMed  Google Scholar 

  • Ahn S, Wei H, Garrison TR et al (2004b) Reciprocal regulation of angiotensin receptor-activated extracellular signal-regulated kinases by beta-arrestins 1 and 2. J Biol Chem 279:7807–7811

    CAS  PubMed  Google Scholar 

  • Aplin M, Christensen GL, Schneider M et al (2007) Differential extracellular signal-regulated kinases 1 and 2 activation by the angiotensin type 1 receptor supports distinct phenotypes of cardiac myocytes. Basic Clin Pharmacol Toxicol 100:296–301

    CAS  PubMed  Google Scholar 

  • Appleton KM, Lee MH, Alele C (2013) Biasing the parathyroid hormone receptor: relating in vitro ligand efficacy to in vivo biological activity. Methods Enzymol 522:229–262

    CAS  PubMed  Google Scholar 

  • Aragay AM, Mellado M, Frade JM et al (1998) Monocyte chemoattractant protein-1-induced CCR2B receptor desensitization mediated by the G protein-coupled receptor kinase 2. Proc Natl Acad Sci USA 95:2985–2990

    CAS  PubMed Central  PubMed  Google Scholar 

  • Azzi M, Charest PG, Angers S et al (2003) Beta-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc Natl Acad Sci USA 100:11406–11411

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barlic J, Andrews JD, Kelvin AA et al (2000) Regulation of tyrosine kinase activation and granule release through beta-arrestin by CXCRI. Nat Immunol 1:227–233

    CAS  PubMed  Google Scholar 

  • Barnes WG, Reiter E, Violin JD et al (2005) beta-Arrestin 1 and Galphaq/11 coordinately activate RhoA and stress fiber formation following receptor stimulation. J Biol Chem 280:8041–8050

    CAS  PubMed  Google Scholar 

  • Bhandari D, Trejo J, Benovic JL et al (2007) Arrestin-2 interacts with the ubiquitin-protein isopeptide ligase atrophin-interacting protein 4 and mediates endosomal sorting of the chemokine receptor CXCR4. J Biol Chem 282:36971–36979

    CAS  PubMed  Google Scholar 

  • Brahmbhatt AA, Klemke RL (2003) ERK and RhoA differentially regulate pseudopodia growth and retraction during chemotaxis. J Biol Chem 278:13016–13025

    CAS  PubMed  Google Scholar 

  • Breitman M, Kook S, Gimenez LE et al (2012) Silent scaffolds: inhibition of c-Jun N-terminal kinase 3 activity in cell by dominant-negative arrestin-3 mutant. J Biol Chem 287:19653–19664

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brinson RE, Harding T, Diliberto PA et al (1998) Regulation of a calcium-dependent tyrosine kinase in vascular smooth muscle cells by angiotensin II and platelet-derived growth factor. Dependence on calcium and the actin cytoskeleton. J Biol Chem 273:1711–1718

    CAS  PubMed  Google Scholar 

  • Burack WR, Shaw AS (2000) Signal transduction: hanging on a scaffold. Curr Opin Cell Biol 12:211–216

    CAS  PubMed  Google Scholar 

  • Carpenter G (2000) EGF receptor transactivation mediated by the proteolytic production of EGF-like agonists. Sci STKE 2000(15):pe1

    CAS  PubMed  Google Scholar 

  • Cheung R, Malik M, Ravyn V et al (2009) An arrestin-dependent multi-kinase signaling complex mediates MIP-1beta/CCL4 signaling and chemotaxis of primary human macrophages. J Leukoc Biol 86:833–845

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi KY, Satterberg B, Lyons DM et al (1994) Ste5 tethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae. Cell 78:499–512

    CAS  PubMed  Google Scholar 

  • Christopoulos A, Kenakin T (2002) G protein-coupled receptor allosterism and complexing. Pharmacol Rev 54:323–374

    CAS  PubMed  Google Scholar 

  • Chun KS, Lao HC, Trempus CS et al (2009) The prostaglandin receptor EP2 activates multiple signaling pathways and beta-arrestin1 complex formation during mouse skin papilloma development. Carcinogenesis 30:1620–1627

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coffa S, Breitman M, Hanson SM et al (2011a) The effect of arrestin conformation on the recruitment of c-Raf1, MEK1, and ERK1/2 activation. PloS One 6:e28723

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coffa S, Breitman M, Spiller BW et al (2011b) A single mutation in arrestin-2 prevents ERK1/2 activation by reducing c-Raf1 binding. Biochemistry 50:6951–6958

    CAS  PubMed Central  PubMed  Google Scholar 

  • Daaka Y, Luttrell LM, Ahn S (1998) Essential role for G protein-coupled receptor endocytosis in the activation of mitogen-activated protein kinase. J Biol Chem 273:685–688

    CAS  PubMed  Google Scholar 

  • Dasgupta P, Rastogi S, Pillai S et al (2006) Nicotine induces cell proliferation by beta-arrestin-mediated activation of Src and Rb-Raf-1 pathways. J Clin Invest 116:2208–2217

    CAS  PubMed Central  PubMed  Google Scholar 

  • DeFea KA, Zalevsky J, Thoma MS et al (2000a) beta-Arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J Cell Biol 148:1267–1281

    CAS  PubMed Central  PubMed  Google Scholar 

  • DeFea KA, Vaughn ZD, O’Bryan EM et al (2000b) The proliferative and antiapoptotic effects of substance P are facilitated by formation of a beta-arrestin-dependent scaffolding complex. Proc Natl Acad Sci USA 97:11086–11091

    CAS  PubMed Central  PubMed  Google Scholar 

  • Della Rocca GJ, Maudsley SR, Daaka Y et al (1999) Pleiotropic coupling of G protein-coupled receptors to the mitogen-activated protein kinase cascade. Role of focal adhesions and receptor tyrosine kinases. J Biol Chem 274:13978–13984

    CAS  PubMed  Google Scholar 

  • DeRooij J, Zwartkruis FL, Verheijen MH et al (1998) Epac is a Rap1 guanine nucleotide exchange factor directly activated by cAMP. Nature 396:474–477

    CAS  Google Scholar 

  • DeWire SM, Kim J, Whalen EJ et al (2008) Beta-arrestin-mediated signaling regulates protein synthesis. J Biol Chem 283:10611–10620

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dikic I, Tokiwa G, Lev S et al (1996) A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature 383:547–550

    CAS  PubMed  Google Scholar 

  • Dikic I, Dikic I, Schlessinger J (1998) Identification of a new Pyk2 isoform implicated in chemokine and antigen receptor signaling. J Biol Chem 273:14301–14308

    CAS  PubMed  Google Scholar 

  • Drake MT, Violin JD, Whalen EJ et al (2008) beta-Arrestin-biased agonism at the beta2-adrenergic receptor. J Biol Chem 283:5669–5676

    CAS  PubMed  Google Scholar 

  • Elorza A, Samago S, Mayor F Jr (2000) Agonist-dependent modulation of G protein-coupled receptor kinase 2 by mitogen-activated protein kinases. Mol Pharmacol 57:778–783

    CAS  PubMed  Google Scholar 

  • Elorza A, Penela P, Sarnago S et al (2003) MAPK-dependent degradation of G protein-coupled receptor kinase 2. J Biol Chem 278:29164–29173

    CAS  PubMed  Google Scholar 

  • Erpel T, Courtneidge SA (1995) Src family protein tyrosine kinases and cellular signal transduction pathways. Curr Opin Cell Biol 7:176–182

    CAS  PubMed  Google Scholar 

  • Fan G, Shumay E, Malbon CC et al (2001) c-Src tyrosine kinase binds the beta2-adrenergic receptor via phospho-Tyr-350, phosphorylates G-protein-linked receptor kinase 2, and mediates agonist-induced receptor desensitization. J Biol Chem 276:13240–13247

    CAS  PubMed  Google Scholar 

  • Ferguson SS (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 53:1–24

    CAS  PubMed  Google Scholar 

  • Fessart D, Simaan M, Laporte SA (2005) c-Src regulates clathrin adapter protein 2 interaction with beta-arrestin and the angiotensin II type 1 receptor during clathrin-mediated internalization. Mol Endocrinol 19:491–503

    CAS  PubMed  Google Scholar 

  • Fessart D, Simaan M, Zimmerman B et al (2007) Src-dependent phosphorylation of beta2-adaptin dissociates the beta-arrestin-AP-2 complex. J Cell Sci 120:1723–1732

    CAS  PubMed  Google Scholar 

  • Fong AM, Premont RT, Richardson RM et al (2002) Defective lymphocyte chemotaxis in beta-arrestin2- and GRK6-deficient mice. Proc Natl Acad Sci USA 99:7478–7483

    CAS  PubMed Central  PubMed  Google Scholar 

  • Freedman NJ, Lefkowitz RJ (1996) Desensitization of G protein-coupled receptors. Recent Prog Horm Res 51:319–351

    CAS  PubMed  Google Scholar 

  • Galandrin S, Bouvier M (2006) Distinct signaling profiles of beta1 and beta2 adrenergic receptor ligands toward adenylyl cyclase and mitogen-activated protein kinase reveals the pluridimensionality of efficacy. Mol Pharmacol 70:1575–1584

    CAS  PubMed  Google Scholar 

  • Galet C, Ascoli M (2008) Arrestin-3 is essential for the activation of Fyn by the luteinizing hormone receptor (LHR) in MA-10 cells. Cell Signal 20:1822–2829

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ge L, Ly Y, Hollenberg M et al (2003) A beta-arrestin-dependent scaffold is associated with prolonged MAPK activation in pseudopodia during protease-activated receptor-2-induced chemotaxis. J Biol Chem 278:34418–34426

    CAS  PubMed  Google Scholar 

  • Ge L, Shenoy SK, Lefkowitz RJ et al (2004) Constitutive protease-activated receptor-2-mediated migration of MDA MB-231 breast cancer cells requires both beta-arrestin-1 and -2. J Biol Chem 279:55419–55424

    CAS  PubMed  Google Scholar 

  • Gesty-Palmer D, El Shewy H, Kohout TA et al (2005) beta-Arrestin 2 expression determines the transcriptional response to lysophosphatidic acid stimulation in murine embryo fibroblasts. J Biol Chem 280:32157–32167

    CAS  PubMed  Google Scholar 

  • Gesty-Palmer D, Chen M, Reiter E et al (2006) Distinct beta-arrestin- and G protein-dependent pathways for parathyroid hormone receptor-stimulated ERK1/2 activation. J Biol Chem 281:10856–10864

    CAS  PubMed  Google Scholar 

  • Gesty-Palmer D, Flannery P, Yuan L et al (2009) A beta-arrestin biased agonist of the parathyroid hormone receptor (PTH1R) promotes bone formation independent of G protein activation. Sci Transl Med 1:1ra1

    PubMed Central  PubMed  Google Scholar 

  • Gesty-Palmer D, Liao S, Yuan L et al (2013) beta-Arrestin pathway-selective G protein-coupled receptor agonists engender unique biological efficacy in vivo. Mol Endocrinol 27:296–314

    CAS  PubMed  Google Scholar 

  • Ghalayini AJ, Desai N, Smith KR et al (2002) Light-dependent association of Src with photoreceptor rod outer segment membrane proteins in vivo. J Biol Chem 277:1469–1476

    CAS  PubMed  Google Scholar 

  • Hanson SM, Cleghorn WM, Francis DJ et al (2007) Arrestin mobilizes signaling proteins to the cytoskeleton and redirects their activity. J Mol Biol 368:375–387

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haskell MD, Slack JK, Parsons JT et al (2001) c-Src tyrosine phosphorylation of epidermal growth factor receptor, P190 RhoGAP, and focal adhesion kinase regulates diverse cellular processes. Chem Rev 101:2425–2440

    CAS  PubMed  Google Scholar 

  • Hawes BE, van Biesen T, Koch WJ et al (1995) Distinct pathways of Gi- and Gq-mediated mitogen activated protein kinase activation. J Biol Chem 270:17148–17153

    CAS  PubMed  Google Scholar 

  • Heitzler D, Durand G, Gallay N et al (2012) Competing G protein-coupled receptor kinases balance G protein and beta-arrestin signaling. Mol Syst Biol 8:590

    PubMed Central  PubMed  Google Scholar 

  • Holloway AC, Qian H, Pipolo L et al (2002) Side-chain substitutions within angiotensin II reveal different requirements for signaling, internalization, and phosphorylation of type 1A angiotensin receptors. Mol Pharmacol 61:768–777

    CAS  PubMed  Google Scholar 

  • Hunton DL, Barnes WG, Kim J et al (2005) Beta-arrestin 2-dependent angiotensin II type 1A receptor-mediated pathway of chemotaxis. Mol Pharmacol 67:1229–1236

    CAS  PubMed  Google Scholar 

  • Hupfeld CJ, Resnik JL, Ugi S et al (2005) Insulin-induced beta-arrestin1 Ser-412 phosphorylation is a mechanism for desensitization of ERK activation by Galphai-coupled receptors. J Biol Chem 280:1016–1023

    CAS  PubMed  Google Scholar 

  • Ignatova EG, Belcheva MM, Bohn LM et al (1999) Requirement of receptor internalization for opioid stimulation of mitogen-activated protein kinase: biochemical and immunofluorescence confocal microscopic evidence. J Neurosci 19:56–63

    CAS  PubMed Central  PubMed  Google Scholar 

  • Imamura T, Huang J, Dalle S et al (2001) beta-Arrestin-mediated recruitment of the Src family kinase Yes mediates endothelin-1-stimulated glucose transport. J Biol Chem 276:43663–43667

    CAS  PubMed  Google Scholar 

  • Jafri F, El-Shewy HM, Lee MH et al (2006) Constitutive ERK1/2 activation by a chimeric neurokinin 1 receptor-beta-arrestin1 fusion protein. Probing the composition and function of the G protein-coupled receptor “signalsome”. J Biol Chem 281:19346–19357

    CAS  PubMed  Google Scholar 

  • Kenakin TP (1996) Receptor conformational induction versus selection: All part of the same energy landscape. Trends Pharmacol Sci 17:190–191

    CAS  Google Scholar 

  • Kenakin T, Miller LE (2010) Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev 62:265–304

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kendall RT, Strungs EG, Rachidi SM et al (2011) The beta-arrestin pathway-selective type 1A angiotensin receptor (AT1A) agonist [Sar1, Ile4, Ile8]angiotensin II regulates a robust G protein-independent signaling network. J Biol Chem 286:19880–19891

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim J, Ahn S, Ren XR (2005) Functional antagonism of different G protein-coupled receptor kinases for beta-arrestin-mediated angiotensin II receptor signaling. Proc Natl Acad Sci USA 102:1442–1447

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim J, Zhang L, Peppel K et al (2008) Beta-arrestins regulate atherosclerosis and neointimal hyperplasia by controlling smooth muscle cell proliferation and migration. Circ Res 103:70–79

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim J, Ahn S, Rajagopal K et al (2009) Independent beta-arrestin2 and Gq/protein kinase Czeta pathways for ERK stimulated by angiotensin type 1A receptors in vascular smooth muscle cells converge on transactivation of the epidermal growth factor receptor. J Biol Chem 284:11953–11962

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kohout TA, Nicholas SL, Perry SJ et al (2004) Differential desensitization, receptor phosphorylation, beta-arrestin recruitment, and ERK1/2 activation by the two endogenous ligands for the CC chemokine receptor 7. J Biol Chem 279:23214–23222

    CAS  PubMed  Google Scholar 

  • Kolch W, Heldecker G, Kochs G et al (1993) Protein kinase C alpha activates Raf-1 by direct phosphorylation. Nature 364:249–255

    CAS  PubMed  Google Scholar 

  • Kryiakis JM, Avruch J (1996) Sounding the alarm: protein kinase cascades activated by stress and inflammation. J Biol Chem 271:24313–24316

    Google Scholar 

  • Kuo F-T, Lu T-L, Fu H-W (2006) Opposing effects of beta-arrestin1 and beta-arrestin2 on activation and degradation of Src induced by protease-activated receptor 1. Cell Signal 18:1914–1923

    CAS  PubMed  Google Scholar 

  • Lee M-H, El-Shewy HM, Luttrell DK et al (2008) Role of beta-arrestin-mediated desensitization and signaling in the control of angiotensin AT1a receptor-stimulated transcription. J Biol Chem 283:2088–2097

    CAS  PubMed  Google Scholar 

  • Lee SH, Hollingsworth R, Kwon HY et al (2012) beta-arrestin 2-dependent activation of ERK1/2 is required for ADP-induced paxillin phosphorylation at Ser(83) and microglia chemotaxis. Glia 60:1366–1377

    PubMed  Google Scholar 

  • Lefkowitz RJ, Pierce KL, Luttrell LM (2002) Dancing with different partners: PKA phosphorylation of seven membrane-spanning receptors regulates their G protein coupling specificity. Mol Pharm 62:971–974

    CAS  Google Scholar 

  • Lev S, Moreno H, Martinez R et al (1995) Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions. Nature 376:737–745

    CAS  PubMed  Google Scholar 

  • Li X, Hunter D, Morris J et al (1998) A calcium-dependent tyrosine kinase splice variant in human monocytes. Activation by a two-stage process involving adherence and a subsequent intracellular signal. J Biol Chem 273:9361–9364

    CAS  PubMed  Google Scholar 

  • Lin FT, Krueger KM, Kendall HE et al (1997) Clathrin-mediated endocytosis of the beta-adrenergic receptor is regulated by phosphorylation/dephosphorylation of beta-arrestin1. J Biol Chem 272:31051–31057

    CAS  PubMed  Google Scholar 

  • Lin FT, Miller WE, Luttrell LM et al (1999) Feedback regulation of beta-arrestin1 function by extracellular signal-regulated kinases. J Biol Chem 274:15971–15974

    CAS  PubMed  Google Scholar 

  • Lin FT, Chen W, Shenoy S et al (2002) Phosphorylation of beta-arrestin2 regulates its function in internalization of beta(2)-adrenergic receptors. Biochemistry 41:10692–10699

    CAS  PubMed  Google Scholar 

  • Liu X, Pawson T (1994) Biochemistry of the Src protein-tyrosine kinase: regulation by SH2 and SH3 domains. Recent Prog Horm Res 49:149–160

    CAS  PubMed  Google Scholar 

  • Luttrell LM (2003) Location, Location, Location. Spatial and temporal regulation of MAP kinases by G protein-coupled receptors. J Mol Endo 30:117–126

    CAS  Google Scholar 

  • Luttrell LM, Gesty-Palmer D (2010) Beyond desensitization: physiological relevance of arrestin-dependent signaling. Pharmacol Rev 62:305–330

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luttrell LM, Kenakin TP (2011) Refining efficacy: allosterism and bias in G protein-coupled receptor signaling. Methods Mol Biol 756:3–35

    CAS  PubMed  Google Scholar 

  • Luttrell LM, Lefkowitz RJ (2002) The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci 115:455–465

    CAS  PubMed  Google Scholar 

  • Luttrell DK, Luttrell LM (2004) Not so strange bedfellows: G-protein-coupled receptors and Src family kinases. Oncogene 23:7969–7978

    CAS  PubMed  Google Scholar 

  • Luttrell LM, Hawes BE, van Biesen T et al (1996) Role of c-Src in G protein-coupled receptor- and Gbetagamma subunit-mediated activation of mitogen activated protein kinases. J Biol Chem 271:19443–19450

    CAS  PubMed  Google Scholar 

  • Luttrell LM, Della Rocca GJ, van Biesen T et al (1997) Gbetagamma subunits mediate Src-dependent phosphorylation of the epidermal growth factor receptor. J Biol Chem 272:4637–4644

    CAS  PubMed  Google Scholar 

  • Luttrell LM, Ferguson SS, Daaka Y et al (1999) Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 283:655–661

    CAS  PubMed  Google Scholar 

  • Luttrell LM, Roudabush FL, Choy EW et al (2001) Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci USA 98:2449–2454

    CAS  PubMed Central  PubMed  Google Scholar 

  • Machesky LM (1997) Cell motility: complex dynamics at the leading edge. Curr Biol 7:R164–R167

    CAS  PubMed  Google Scholar 

  • Maudsley S, Martin B, Luttrell LM (2005) Perspectives in pharmacology: the origins of diversity and specificity in G protein-coupled receptor signaling. J Pharmacol Exp Ther 314:485–494

    CAS  PubMed Central  PubMed  Google Scholar 

  • McDonald PH, Chow CW, Miller WE et al (2000) Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290:1574–1577

    CAS  PubMed  Google Scholar 

  • Meng D, Lynch MJ, Huston E et al (2009) MEK1 binds directly to beta-arrestin1, influencing both its phosphorylation by ERK and the timing of its isoprenaline-stimulated internalization. J Biol Chem 284:11425–11435

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller WE, Maudsley S, Ahn S et al (2000) beta-Arrestin1 interacts with the catalytic domain of the tyrosine kinase c-SRC. Role of beta-arrestin1-dependent targeting of c-SRC in receptor endocytosis. J Biol Chem 275:11312–11319

    CAS  PubMed  Google Scholar 

  • Miller WE, McDonald PH, Cai SF et al (2001) Identification of a motif in the carboxyl terminus of beta-arrestin2 responsible for activation of JNK3. J Biol Chem 276:27770–27777

    CAS  PubMed  Google Scholar 

  • Miura S, Zhang J, Matsuo Y et al (2004) Activation of extracellular signal-activated kinase by angiotensin II-induced Gq-independent epidermal growth factor receptor transactivation. Hypertens Res 27:765–770

    CAS  PubMed  Google Scholar 

  • Mossa O, Ashton AW, Fraig M et al (2008) Novel role of thromboxane receptors beta isoform in bladder cancer pathogenesis. Cancer Res 68:4097–4104

    Google Scholar 

  • Nobles KN, Guan Z, Xiao K et al (2007) The active conformation of beta-arrestin1: direct evidence for the phosphate sensor in the N-domain and conformational differences in the active states of beta-arrestins1 and -2. J Biol Chem 282:21370–21381

    CAS  PubMed  Google Scholar 

  • Nobles KN, Xiao K, Ahn S et al (2011) Distinct phosphorylation sites on the β(2)-adrenergic receptor establish a barcode that encodes differential functions of β-arrestin. Sci Signal 4:ra51

    CAS  PubMed Central  PubMed  Google Scholar 

  • Noma T, Lemaire A, Naga Prasad SV et al (2007) Beta-arrestin-mediated beta1-adrenergic receptor transactivation of the EGFR confers cardioprotection. J Clin Invest 117:2445–2458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oakley RH, Laporte SA, Holt JA et al (2000) Differential affinities of visual arrestin, beta arrestin1, and beta arrestin2 for G protein-coupled receptors delineate two major classes of receptors. J Biol Chem 275:17201–17210

    CAS  PubMed  Google Scholar 

  • Ozawa K, Whalen EJ, Nelson CD et al (2008) S-nitrosylation of beta-arrestin regulates beta-adrenergic receptor trafficking. Mol Cell 31:395–405

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parent JL, Labrecque P, Orsini MJ et al (1999) Internalization of the TXA2 receptor alpha and beta isoforms. Role of the differentially spliced COOH terminus in agonist-promoted receptor internalization. J Biol Chem 274:8941–8948

    CAS  PubMed  Google Scholar 

  • Pearson G, Robinson F, Beers Gibson T et al (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiologic functions. Endocr Rev 22:153–183

    CAS  PubMed  Google Scholar 

  • Penela P, Elorza A, Sarnago S et al (2001) Beta-arrestin- and c-Src-dependent degradation of G-protein-coupled receptor kinase 2. EMBO J 20:5129–5138

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pierce KL, Luttrell LM, Lefkowitz RJ (2001a) New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades. Oncogene 20:1532–1539

    CAS  PubMed  Google Scholar 

  • Pierce KL, Tohgo A, Ahn S et al (2001b) Epidermal growth factor (EGF) receptor-dependent ERK activation by G protein-coupled receptors: a co-culture system for identifying intermediates upstream and downstream of heparin-binding EGF shedding. J Biol Chem 276:23155–23160

    CAS  PubMed  Google Scholar 

  • Pitcher JA, Tesmer JG, Freeman JL et al (1999) Feedback inhibition of G protein-coupled receptor kinase 2 (GRK2) activity by extracellular signal-regulated kinases. J Biol Chem 274:34531–34534

    CAS  PubMed  Google Scholar 

  • Prenzel N, Zwick E, Daub H et al (1999) EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402:884–888

    CAS  PubMed  Google Scholar 

  • Ren XR, Reiter E, Ahn S et al (2005) Different G protein-coupled receptor kinases govern G protein and beta-arrestin-mediated signaling of V2 vasopressin receptor. Proc Natl Acad Sci USA 102:1448–1453

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ross EM, Wilkie TM (2000) GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem 69:795–827

    CAS  PubMed  Google Scholar 

  • Samama P, Cotecchia S, Costa T et al (1993) A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model. J Biol Chem 268:4625–4636

    CAS  PubMed  Google Scholar 

  • Sarnago S, Elorza A, Mayor F Jr (1999) Agonist-dependent phosphorylation of the G protein-coupled receptor kinase 2 (GRK2) by Src tyrosine kinase. J Biol Chem 274:34411–34416

    CAS  PubMed  Google Scholar 

  • Scott MG, Le Rouzic E, Perianin A et al (2002) Differential nucleocytoplasmic shuttling of beta-arrestins. Characterization of a leucine-rich nuclear export signal in beta-arrestin2. J Biol Chem 277:37693–37701

    CAS  PubMed  Google Scholar 

  • Scott MG, Pierotti V, Storez H et al (2006) Cooperative regulation of extracellular signal-regulated kinase activation and cell shape change by filamin A and beta-arrestins. Mol Cell Biol 26:3432–3445

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seo J, Tsakem EL, Breitman M et al (2011) Identification of arrestin-3-specific residues necessary for JNK3 kinase activation. J Biol Chem 286:27894–27901

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seta K, Nanamori M, Modrall JG et al (2002) AT1 receptor mutant lacking heterotrimeric G protein coupling activates the Src-Ras-ERK pathway without nuclear translocation of ERKs. J Biol Chem 277:9268–9277

    CAS  PubMed  Google Scholar 

  • Shenoy SK (2007) Seven-transmembrane receptors and ubiquitination. Circ Res 100:1142–1154

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shenoy SK, Lefkowitz RJ (2003) Trafficking pattern of beta-arrestin and G protein-coupled receptors determined by the kinetics of beta-arrestin deubiquitination. J Biol Chem 278:14498–14506

    CAS  PubMed  Google Scholar 

  • Shenoy SK, Lefkowitz RJ (2005) Receptor-specific ubiquitination of beta-arrestin directs assembly and targeting of seven-transmembrane receptor signalosomes. J Biol Chem 280:15315–15324

    CAS  PubMed  Google Scholar 

  • Shenoy SK, McDonald PH, Kohout TA et al (2001) Regulation of receptor fate by ubiquitination of activated beta2-adrenergic receptor and beta-arrestin. Science 294:1307–1313

    CAS  PubMed  Google Scholar 

  • Shenoy SK, Drake MT, Nelson CD et al (2006) beta-Arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. J Biol Chem 281:1261–1273

    CAS  PubMed  Google Scholar 

  • Shenoy SK, Barak LS, Xiao K et al (2007) Ubiquitination of beta-arrestin links seven-transmembrane receptor endocytosis and ERK activation. J Biol Chem 282:29549–29562

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shenoy SK, Xiao K, Venkataramanan V et al (2008) Nedd4 mediates agonist-dependent ubiquitination, lysosomal targeting, and degradation of the beta2-adrenergic receptor. J Biol Chem 283:22166–22176

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shenoy SK, Modi AS, Shukla AK et al (2009) Beta-arrestin-dependent signaling and trafficking of 7-transmembrane receptors is reciprocally regulated by the deubiquitinase USP33 and the E3 ligase Mdm2. Proc Natl Acad Sci USA 106:6650–6655

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shukla AK, Violin JD, Whalen EJ et al (2008) Distinct conformational changes in beta-arrestin report biased agonism at seven-transmembrane receptors. Proc Natl Acad Sci USA 105:9988–9993

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song X, Raman D, Gurevich EV et al (2006) Visual and both non-visual arrestins in their “inactive” conformation bind JNK3 and Mdm2 and relocalize them from the nucleus to the cytoplasm. J Biol Chem 281:21491–21499

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song X, Coffa S, Fu H et al (2009) How does arrestin assemble MAPKs into a signaling complex? J Biol Chem 284:685–695

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stoffel RH III, Pitcher JA, Lefkowitz RJ (1997) Targeting G protein-coupled receptor kinases to their receptor substrates. J Membr Biol 157:1–8

    CAS  PubMed  Google Scholar 

  • Stokoe D, Macdonald SG, Cadwallader K et al (1994) Activation of Raf as a result of recruitment to the plasma membrane. Science 264:1463–1467

    CAS  PubMed  Google Scholar 

  • Stork PJ (2002) ERK signaling: duration, duration, duration. Cell Cycle 1:315–317

    CAS  PubMed  Google Scholar 

  • Sullivan SK, McGrath DA, Grigoriadis D et al (1999) Pharmacological and signaling analysis of human chemokine receptor CCR-7 stably expressed in HEK-293 cells: high-affinity binding of recombinant ligands MIP-3beta and SLC stimulates multiple signaling cascades. Biochem Biophys Res Commun 263:685–690

    CAS  PubMed  Google Scholar 

  • Superti-Furga G, Courtneidge SA (1995) Structure-function relationships in Src family and related protein tyrosine kinases. Bioessays 17:321–330

    CAS  PubMed  Google Scholar 

  • Talbot J, Joly E, Prentki M et al (2012) beta-Arrestin1-mediated recruitment of c-Src underlies the proliferative action of glucagon-like peptide-1 in pancreatic β INS832/13 cells. Mol Cell Endocrinol 364:65–70

    CAS  PubMed  Google Scholar 

  • Terrillon S, Bouvier M (2004) Receptor activity-independent recruitment of beta-arrestin2 reveals specific signalling modes. EMBO J 23:3950–3961

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tohgo A, Pierce KL, Choy EW et al (2002) beta-Arrestin scaffolding of the ERK cascade enhances cytosolic ERK activity but inhibits ERK mediated transcription following angiotensin AT1a receptor stimulation. J Biol Chem 277:9429–9436

    CAS  PubMed  Google Scholar 

  • Tohgo A, Choy EW, Gesty-Palmer D et al (2003) The stability of the G protein-coupled receptor-beta-arrestin interaction determines the mechanism and functional consequence of ERK activation. J Biol Chem 278:6258–6267

    CAS  PubMed  Google Scholar 

  • van Biesen T, Hawes BE, Luttrell DK et al (1995) Receptor tyrosine kinase- and Gbetagamma-mediated MAP kinase activation by a common signalling pathway. Nature 376:781–784

    PubMed  Google Scholar 

  • Vossler MR, Yao H, York RD et al (1997) cAMP activates MAP kinase and Elk-1 through a B-Raf- and Rap-1-dependent pathway. Cell 89:73–82

    CAS  PubMed  Google Scholar 

  • Wang Y, Tang Y, Teng L et al (2006) Association of beta-arrestin and TRAF6 negatively regulates Toll-like receptor-interleukin 1 receptor signaling. Nat Immunol 7:139–147

    CAS  PubMed  Google Scholar 

  • Wei H, Ahn S, Shenoy SK et al (2003) Independent G protein and beta-arrestin2 mediated activation of ERK by angiotensin. Proc Natl Acad Sci USA 100:10782–10787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Werbonat Y, Kleutges N, Jakobs KH et al (2000) Essential role of dynamin in internalization of M2 muscarinic acetylcholine and angiotensin AT1A receptors. J Biol Chem 275:21969–21974

    CAS  PubMed  Google Scholar 

  • Whalen EJ, Rajagopal S, Lefkowitz RJ (2011) Therapeutic potential of β-arrestin- and G protein-biased agonists. Trends Mol Med 17:126–139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whitmarsh AJ, Cavanagh J, Tournier C et al (1998) A mammalian scaffold complex that selectively mediates MAP kinase activation. Science 281:1671–1674

    CAS  PubMed  Google Scholar 

  • Wisler JW, DeWire SM, Whalen EJ et al (2007) A unique mechanism of beta-blocker action: carvedilol stimulates beta-arrestin signaling. Proc Natl Acad Sci USA 104:16657–16662

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu J, Dent P, Jelinek T et al (1993) Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3’,5’-monophosphate. Science 62:1065–1068

    Google Scholar 

  • Xiao K, Shenoy SK, Nobles K et al (2004) Activation-dependent conformational changes in beta-arrestin 2. J Biol Chem 279:55744–55753

    CAS  PubMed  Google Scholar 

  • Xiao K, Sun J, Kim J et al (2010) Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR). Proc Natl Acad Sci USA 107:15299–15304

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zidar DA, Violin JD, Whalen EJ et al (2009) Selective engagement of G protein coupled receptor kinases (GRKs) encodes distinct functions of biased ligands. Proc Natl Acad Sci USA 106:9649–9654

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zimmerman B, Simaan M, Lee M-H et al (2009) c-Src-mediated phosphorylation of AP-2 reveals a general mechanism for receptors internalizing through the clathrin pathway. Cell Signal 21:103–110

    CAS  PubMed  Google Scholar 

  • Zoudilova M, Kumar P, Ge L et al (2007) Beta-arrestin-dependent regulation of the cofilin pathway downstream of protease-activated receptor-2. J Biol Chem 282:20634–20646

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work conducted in the authors’ laboratory is supported by National Institutes of Health Grant R01 DK055524 and the Research Service of the Charleston, SC Veterans Affairs Medical Center. The contents of this article do not represent the views of the Department of Veterans Affairs or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis M. Luttrell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Strungs, E.G., Luttrell, L.M. (2014). Arrestin-Dependent Activation of ERK and Src Family Kinases. In: Gurevich, V. (eds) Arrestins - Pharmacology and Therapeutic Potential. Handbook of Experimental Pharmacology, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41199-1_12

Download citation

Publish with us

Policies and ethics