Skip to main content

Bio-inspired Computation Algorithms

  • Chapter
  • First Online:

Abstract

Bio-inspired computation is the use of computers to model the living phenomena and simultaneously the study of life to improve the usage of computers. Swarm behaviors in animal groups such as bird flocks, bees, ants, fish schools, and sheep herds, as well as insects like mosquitoes, ants, and bees, often exhibit incredible abilities to solve complex problems that seem far beyond their capabilities. This chapter mainly focuses on the biological inspiration, principle, and implementation procedures of four popular bio-inspired computation algorithms including ant colony optimization (ACO), particle swarm optimization (PSO), artificial bee colony (ABC), and differential evolution (DE). Special emphasis has been laid on how the biological behavior can be transferred into a technical algorithm. Moreover, description of algorithms in more general terms and the most successful variants of these algorithms are provided. Finally, a brief introduction to other bio-inspired computation algorithms such as glowworm swarm optimization (GSM), bacteria foraging optimization (BFO), bat-inspired algorithm (BA) is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bavelas A (1950) Communication patterns in task-oriented groups. J Acoust Soc Am 22(6):725–730

    Google Scholar 

  • Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, New York

    Google Scholar 

  • Bullnheimer B, Hartl RF, Strauss C (1999) A new rank based version of the Ant System: a computational study. Central European J Operations Res Econom 7(1):25–38

    Google Scholar 

  • Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evolut Comput 6(1):58–73

    Google Scholar 

  • Colorni A, Dorigo M, Maniezzo V (1991) Positive feedback as a search strategy. Techn Rep, politecnico di milano

    Google Scholar 

  • Crina G, Ajith A (2006) Stigmergic optimization: inspiration, technologies and perspectives. In: Stigmergic optimization. Springer Berlin Heidelberg, pp 1–24

    Google Scholar 

  • Deneubourg J-L, Aron S, Goss S, Pasteels JM (1990) The self-organizing exploratory pattern of the argentine ant. J Insect Behav 3(2):159–168

    Google Scholar 

  • Dorigo M (1992) Optimization, learning and natural algorithms. PhD Thesis, Politecnico di Milano, Italy

    Google Scholar 

  • Dorigo M, Blum C (2005) Ant colony optimization theory: a survey. Theor Comput Sci 344(2):243–278

    Google Scholar 

  • Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evolut Comput 1(1):53–66

    Google Scholar 

  • Dorigo M, Stützle T (2003) The ant colony optimization metaheuristic: algorithms, applications, and advances. In: Glover F, Kochenberger GA (eds) Handbook of Metaheuristics. Springer, Boston, MA, pp 250–285

    Google Scholar 

  • Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern B Cybern 26(1):29–41

    Google Scholar 

  • Dornhaus A, Klügl F, Puppe F, Tautz J (1998) Task selection in honeybees-experiments using multi-agent simulation. In: Proceedings of The Third German Workshop on Artificial Life, Bochum. Verlag Harry Deutsch, pp 171--183

    Google Scholar 

  • Duan H (2005) Ant colony algorithms: theory and applications. Science Press, Beijing, China

    Google Scholar 

  • Duan H (2010) Ant colony optimization: principle, convergence and application. In: Bijaya Ketan Panigrahi, Yuhui Shi, Lim M-H (eds) Handbook of Swarm Intelligence. Springer Berlin Heidelberg, pp 373–388

    Google Scholar 

  • Duan H, Liu S (2010) Non-linear dual-mode receding horizon control for multiple unmanned air vehicles formation flight based on chaotic particle swarm optimisation. IET Control Theory Appl 4(11):2565–2578

    Google Scholar 

  • Duan H, Xing Z (2009) Improved quantum evolutionary computation based on particle swarm optimization and two-crossovers. Chin Phys Lett 26(12):120304

    Google Scholar 

  • Duan H, Xu C, Xing Z (2010) A hybrid artificial bee colony optimization and quantum evolutionary algorithm for continuous optimization problems. Int J Neural Syst 20(01):39–50

    Google Scholar 

  • Duan H, Zhang X, Xu C (2011) Bio-inspired computing. Science Press, Beijing, China

    Google Scholar 

  • Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya. IEEE, pp 39–43

    Google Scholar 

  • Grosan C, Abraham A (2011) Swarm intelligence. In: Intelligent systems: a modern approach. Springer, Berlin, Heidelberg, pp 409–422

    Google Scholar 

  • Heppner F, Grenander U (1990) A stochastic nonlinear model for coordinated bird flocks. In: Krasner S (ed) The ubiquity of chaos. AAAS Publications, Washington, DC, pp 233–238

    Google Scholar 

  • Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132

    Google Scholar 

  • Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471

    Google Scholar 

  • Kennedy J (1998) The behavior of particles. Evolutionary programming VII. In: David Hutchison, Takeo Kanade, Josef Kittler (eds) Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp 579--589

    Google Scholar 

  • Kennedy J (1999) Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proceedings of the 1999 Congress on Evolutionary Computation, Washington, DC. IEEE, pp 1931–1938

    Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ. IEEE, pp 1942–1948

    Google Scholar 

  • Kennedy J, Mendes R (2002) Population structure and particle swarm performance. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC'02), Honolulu, HI. IEEE, pp 1671–1676

    Google Scholar 

  • Krishnanand K, Ghose D (2009) Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm Intell 3(2):87–124

    Google Scholar 

  • Lampinen J, Zelinka I (2000) On stagnation of the differential evolution algorithm. In: Proceedings of 6th International Mendel Conference Soft Computing, Brno, Czech Republic. pp 76--83

    Google Scholar 

  • Menzel R, De Marco RJ, Greggers U (2006) Spatial memory, navigation and dance behaviour in Apis mellifera. J Comp Physiol A 192(9):889–903

    Google Scholar 

  • Millonas MM (1994) Swarms, phase transitions, and collective intelligence. In: Artificial life III. Reading, MA. Addison-Wesley, pp 417--445

    Google Scholar 

  • Neri F, Tirronen V (2008) On memetic differential evolution frameworks: a study of advantages and limitations in hybridization. In: Proceedings of IEEE Congress on Evolutionary Computation, 2008 (IEEE World Congress on Computational Intelligence), Hong Kong. IEEE, pp 2135–2142

    Google Scholar 

  • Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Contr Syst 22(3):52–67

    Google Scholar 

  • Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization: an overview. Swarm Intell 1(1):33–57

    Google Scholar 

  • Price K, Storn R (1997) Differential evolution–a simple evolution strategy for fast optimization. Dr Dobb’s J 22(4):18–24

    Google Scholar 

  • Reynolds CW (1987) Flocks, herds and schools: a distributed behavioral model. Comput Graphics 21(4):25–34

    Google Scholar 

  • Seeley TD (1985) Honeybee ecology: a study of adaptation in social life. Princeton University Press, Princeton

    Google Scholar 

  • Shi Y, Eberhart R. (1998) A modified particle swarm optimizer. In: Proceedings of The 1998 IEEE International Conference on Evolutionary Computation (IEEE World Congress on Computational Intelligence), Anchorage, AK. IEEE, pp 69–73

    Google Scholar 

  • Storn R, Price K (1995) Differential Evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. Techn Rep International Computer Science Institute, Berkeley, CA

    Google Scholar 

  • Stutzle T, Hoos H (1997) MAX-MIN ant system and local search for the traveling salesman problem. In: Proceeding of IEEE Conference on Evolutionary Computation, Indianapolis, IN. IEEE, pp 309–314

    Google Scholar 

  • Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evolut Comput 1(1):67–82

    Google Scholar 

  • Xu C, Duan H, Liu F (2010) Chaotic artificial bee colony approach to Uninhabited Combat Air Vehicle (UCAV) path planning. Aerosp Sci Technol 14(8):535–541

    Google Scholar 

  • Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: Gonzalez JR et al. (eds) Nature inspired cooperative strategies for optimization (NISCO 2010). Studies in computational intelligence, vol 284. Springer, Berlin, pp 65--74

    Google Scholar 

  • Yu J, Duan H (2012) Artificial Bee Colony approach to information granulation-based fuzzy radial basis function neural networks for image fusion. Optik 124(17):3103--3111

    Google Scholar 

  • Zielinski K, Weitkemper P, Laur R, Kammeyer K-D (2006) Parameter study for differential evolution using a power allocation problem including interference cancellation. In: Proceedings of IEEE Congress on Evolutionary Computation, Vancouver, BC. IEEE, pp 1857–1864

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, P., Duan, H. (2014). Bio-inspired Computation Algorithms. In: Bio-inspired Computation in Unmanned Aerial Vehicles. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41196-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41196-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41195-3

  • Online ISBN: 978-3-642-41196-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics