Skip to main content

Asbestos Bodies and Non-asbestos Ferruginous Bodies

  • Chapter
  • First Online:
Pathology of Asbestos-Associated Diseases

Abstract

Asbestos bodies are the histologic hallmark of exposure to asbestos [1–4]. These structures are golden brown, beaded or segmented, dumbbell-shaped objects that have a characteristic microscopic appearance that is readily recognized by the pathologist. Their identification in histologic sections is an important component of the pathologic diagnosis of asbestosis (see Chap. 4), and their presence serves to alert the pathologist that the patient has been exposed to airborne asbestos fibers. It is the purpose of this chapter to discuss the structure and development of asbestos bodies as well as their occurrence and distribution within human tissues. In addition, techniques for the quantification of asbestos bodies are reviewed, along with the relationship of asbestos body formation to the various types of asbestos fibers. Finally, the distinction of asbestos bodies from other ferruginous bodies based on light microscopic and analytical electron microscopic observations is emphasized. The identification and significance of asbestos bodies in cytologic specimens is discussed in Chap. 9, and the relationship between asbestos body concentrations in pulmonary tissues and the various asbestos-associated diseases is reviewed in Chap. 11.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roggli VL, Greenberg SD, Seitzman LH, McGavran MH, Hurst GA, Spivey CG, Nelson KG, Hieger LR (1980) Pulmonary fibrosis, carcinoma, and ferruginous body counts in amosite asbestos workers: a study of six cases. Am J Clin Pathol 73:496–503

    Article  CAS  PubMed  Google Scholar 

  2. Greenberg SD (1982) Asbestos lung disease. Semin Respir Med 4:130–136

    Article  Google Scholar 

  3. Greenberg SD (1988) Asbestos, Ch 22. In: Dail DH, Hammar SP (eds) Pulmonary pathology. Springer, New York, pp 619–635

    Chapter  Google Scholar 

  4. Craighead JE, Abraham JL, Churg A et al (1982) The pathology of asbestos- associated diseases of the lungs and pleural cavities: diagnostic criteria and proposed grading schema (Report of the Pneumoconiosis Committee of the College of American Pathologists and the National Institute for Occupational Safety and Health). Arch Pathol Lab Med 106:544–596

    CAS  PubMed  Google Scholar 

  5. Marchand F (1906) Ueber eigenttimliche Pigmentkristalle in den Lungen. Verhandl d Deutsch path Gesellsch 10:223–228

    Google Scholar 

  6. Fahr T (1914) Demonstrationen: Praparate and Microphotogrammes von einen Falle von Pneumokoniose. Muench Med Woch 11:625

    Google Scholar 

  7. Cooke WE (1927) Pulmonary asbestosis. Br Med J 2:1024–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stewart MJ, Haddow AC (1929) Demonstration of the peculiar bodies of pulmonary asbestosis (“asbestosis bodies”) in material obtained by lung puncture and in the sputum. J Pathol Bacteriol 32:172

    Article  CAS  Google Scholar 

  9. Cooke WE (1929) Asbestos dust and the curious bodies found in pulmonary asbestosis. Br Med J 2:578–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gloyne SR (1929) The presence of the asbestos fibre in the lesions of asbestos workers. Tubercle 10:404–407

    Article  Google Scholar 

  11. Craighead JE (1988) Eyes for the epidemiologist: the pathologist’s role in shaping our understanding of the asbestos-associated diseases. Am J Clin Pathol 89:281–287

    Article  CAS  PubMed  Google Scholar 

  12. Castleman BI (1984) Asbestos: medical and legal aspects. Harcourt, Brace, and Jovanovich, New York

    Google Scholar 

  13. Roggli VL (1989) Pathology of human asbestosis: a critical review. In: Fenoglio-Preiser CM (ed) Advances in pathology, vol 2. Yearbook Pub., Inc, Chicago, pp 31–60

    Google Scholar 

  14. Gross P, de Treville RTP, Cralley LJ, Davis JMG (1968) Pulmonary ferruginous bodies: development in response to filamentous dusts and a method of isolation and concentration. Arch Pathol 85:539–546

    CAS  PubMed  Google Scholar 

  15. Gaensler EA, Addington WW (1969) Asbestos or ferruginous bodies. N Engl J Med 280:488–492

    Article  CAS  PubMed  Google Scholar 

  16. Churg A, Warnock ML (1977) Analysis of the cores of ferruginous (asbestos) bodies from the general population. I: Patients with and without lung cancer. Lab Invest 37:280–286

    CAS  PubMed  Google Scholar 

  17. Churg A, Warnock ML, Green N (1979) Analysis of the cores of ferruginous (asbestos) bodies from the general population. II. True asbestos bodies and pseudoasbestos bodies. Lab Invest 40:31–38

    CAS  PubMed  Google Scholar 

  18. Greenberg SD (1981) Asbestos-associated pulmonary diseases. Cypress, CA

    Google Scholar 

  19. Davis JMG (1970) Further observations on the ultrastructure and chemistry of the formation of asbestos bodies. Exp Mol Pathol 13:346–358

    Article  CAS  PubMed  Google Scholar 

  20. Governa M, Rosanda C (1972) A histochemical study of the asbestos body coating. Br J Ind Med 29:154–159

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Churg AM, Warnock ML (1981) Asbestos and other ferruginous bodies: their formation and clinical significance. Am J Pathol 102:447–456

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Vorwald AJ, Durkan TM, Pratt PC (1951) Experimental studies of asbestosis. Arch Ind Hyg Occup Med 3:1–43

    CAS  Google Scholar 

  23. McLemore TL, Mace ML, Roggli V, Marshall MV, Lawrence EC, Wilson RK, Martin RR, Brinkley BR, Greenberg SD (1980) Asbestos body phagocytosis by human free alveolar macrophages. Cancer Lett 9:85–93

    Article  CAS  PubMed  Google Scholar 

  24. Ghio AJ, LeFurgey A, Roggli VL (1997) In vivo accumulation of iron on crocidolite is associated with decrements in oxidant generation by the fiber. J Toxicol Environ Health 50:125–142

    Article  CAS  PubMed  Google Scholar 

  25. Governa MM, Amati M (1999) Role of iron in asbestos-body-induced oxidant radical generation. J Toxicol Environ Health 58:279–287

    Article  CAS  Google Scholar 

  26. Ghio AJ, Churg A, Roggli VL (2004) Ferruginous bodies: implications in the mechanism of fiber and particle toxicity. Toxicol Pathol 32:643–649

    Article  PubMed  Google Scholar 

  27. Roggli VL, Pratt PC (1983) Numbers of asbestos bodies on iron-stained tissue sections in relation to asbestos body counts in lung tissue digests. Hum Pathol 14:355–361

    Article  CAS  PubMed  Google Scholar 

  28. Farley ML, Greenberg SD, Shuford EH Jr, Hurst GA, Spivey CG, Christianson CS (1977) Ferruginous bodies in sputa of former asbestos workers. Acta Cytol 27:693–700

    Google Scholar 

  29. Morgan A, Holmes A (1980) Concentrations and dimensions of coated and uncoated asbestos fibres in the human lung. Br J Ind Med 37:25–32

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Morgan A, Holmes A (1985) The enigmatic asbestos body: its formation and significance in asbestos-related disease. Environ Res 38:283–292

    Article  CAS  PubMed  Google Scholar 

  31. Dodson RF, O’Sullivan MF, Williams MG Jr, Hurst GA (1982) Analysis of cores of ferruginous bodies from former asbestos workers. Environ Res 28:171–178

    Article  CAS  PubMed  Google Scholar 

  32. Dodson RF, Williams MG, O’Sullivan MF, Corn CJ, Greenberg SD, Hurst GA (1985) A comparison of the ferruginous body and uncoated fiber content in the lungs of former asbestos workers. Am Rev Respir Dis 132:143–147

    CAS  PubMed  Google Scholar 

  33. Warnock ML, Wolery G (1987) Asbestos bodies or fibers and the diagnosis of asbestosis. Environ Res 44:29–44

    Article  CAS  PubMed  Google Scholar 

  34. Suzuki Y, Churg J (1969) Structure and development of the asbestos body. Am J Pathol 55:79–107

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Koerten HK, Hazekamp J, Kroon M, Daems WT (1990) Asbestos body formation and iron accumulation in mouse peritoneal granulomas after the introduction of crocidolite asbestos fibers. Am J Pathol 136:141–157

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pascolo L, Gianocelli A, Kaulich B, Rizzardi C, Schneider M, Bottin C, Polentarutti M, Kishinova M, Longoni A, Melato M (2011) Synchrotron soft X-ray imaging and fluorescence microscopy reveal novel features of asbestos body morphology and composition in human lung tissues. Part Fibre Toxicol 8:7–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Borelli V, Brochetta C, Melato M, Rizzardi C, Polentarutti M, Busatto C, Vita F, Abbate R, Gotter R, Zabucchi G (2007) A procedure for the isolation of asbestos bodies from lung tissue by exploiting their magnetic properties: a new approach to asbestos body study. J Toxicol Environ Health A 70:1232–1240

    Article  CAS  PubMed  Google Scholar 

  38. Haque AK, Kanz MF (1988) Asbestos bodies in children’s lungs: an association with sudden infant death syndrome and bronchopulmonary dysplasia. Arch Pathol Lab Med 112:514–518

    CAS  PubMed  Google Scholar 

  39. Gloyne SR (1931) The formation of the asbestosis body in the lung. Tubercle 12:399–401

    Article  CAS  Google Scholar 

  40. Botham SK, Holt PF (1971) Development of asbestos bodies on amosite, chrysotile, and crocidolite fibres in guinea-pig lungs. J Pathol 105:159–167

    Article  CAS  PubMed  Google Scholar 

  41. Mace ML, McLemore TL, Roggli V, Brinkley BR, Greenberg SD (1980) Scanning electron microscopic examination of human asbestos bodies. Cancer Lett 9:95–104

    Article  PubMed  Google Scholar 

  42. Koerten HK, de Bruijn JD, Daems WT (1990) The formation of asbestos bodies by mouse peritoneal macrophages: an in vitro study. Am J Pathol 137:121–134

    CAS  PubMed  PubMed Central  Google Scholar 

  43. DeVuyst P, Jedwab J, Robience Y, Yernault J-C (1982) “Oxalate bodies”, another reaction of the human lung to asbestos inhalation? Eur J Respir Dis 63:543–549

    CAS  Google Scholar 

  44. Le Bouffant L, Bruyere S, Martin JC, Tichoux G, Normand C (1976) Quelques observations sur les fibres d’amiante et les formations minerales diverses rencontrees dans les poumons asbestosiques. Rev Fr Mal Respir 4:121–140

    Google Scholar 

  45. Ghio AJ, Roggli VL, Richards JH, Crissman KM, Stonehuerner JD, Piantadosi CA (2003) Oxalate deposition on asbestos bodies. Hum Pathol 34:737–742

    Article  CAS  PubMed  Google Scholar 

  46. Roggli VL (1989) Scanning electron microscopic analysis of mineral fibers in human lungs, Ch 5. In: Ingram P, Shelburne JD, Roggli VL (eds) Microprobe analysis in medicine. Hemisphere Pub. Corp, Washington, DC, p 97–110

    Google Scholar 

  47. Brody AR, Hill LH (1982) Interstitial accumulation of inhaled chrysotile asbestos fibers and consequent formation of microcalcifications. Am J Pathol 109:107–114

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Koss MN, Johnson FB, Hochholzer L (1981) Pulmonary blue bodies. Hum Pathol 12:258–266

    Article  CAS  PubMed  Google Scholar 

  49. Thomson JG, Kaschula ROC, MacDonald RR (1963) Asbestos as a modern urban hazard. S Afr Med J 37:77–81

    CAS  PubMed  Google Scholar 

  50. Bignon J, Goni J, Bonnaud G, Jaurand MC, Dufour G, Pinchon MC (1970) Incidence of pulmonary ferruginous bodies in France. Environ Res 3:430–442

    Article  Google Scholar 

  51. Smith MJ, Naylor B (1972) A method of extracting ferruginous bodies from sputum and pulmonary tissues. Am J Clin Pathol 58:250–254

    Article  CAS  PubMed  Google Scholar 

  52. Rosen P, Melamed M, Savino A (1972) The “ferruginous body” content of lung tissue: a quantitative study of eighty-six patients. Acta Cytol 16:207–211

    CAS  PubMed  Google Scholar 

  53. Breedin PH, Buss DH (1976) Ferruginous (asbestos) bodies in the lungs of rural dwellers, urban dwellers and patients with pulmonary neoplasms. South Med J 69:401–404

    Article  CAS  PubMed  Google Scholar 

  54. Bhagavan BS, Koss LG (1976) Secular trends in presence and concentration of pulmonary asbestos bodies – 1940 to 1972. Arch Pathol 100:539–541

    CAS  Google Scholar 

  55. Churg A, Warnock ML (1977) Correlation of quantitative asbestos body counts and occupation in urban patients. Arch Pathol Lab Med 101:629–634

    CAS  PubMed  Google Scholar 

  56. Steele RH, Thomson KJ (1982) Asbestos bodies in the lung: Southampton (UK) and Wellington (New Zealand). Br J Ind Med 39:349–354

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Rogers AJ (1984) Determination of mineral fibre in human lung tissue by light microscopy and transmission electron microscopy. Ann Occup Hyg 28:1–12

    CAS  PubMed  Google Scholar 

  58. Kobayashi H, Watanabe H, Zhang WM, Ohnishi Y (1986) A quantitative and histological study on pulmonary effects of asbestos exposure in general autopsied lungs. Acta Pathol Jpn 36:1781–1791

    CAS  PubMed  Google Scholar 

  59. Dodson RF, Williams MG, Huang J, Bruce JR (1999) Tissue burden of asbestos in nonoccupationally exposed individuals from east Texas. Am J Ind Med 35:281–286

    Article  CAS  PubMed  Google Scholar 

  60. King JA, Wong SW (1996) Autopsy evaluation of asbestos exposure: retrospective study of 135 cases with quantitation of ferruginous bodies in digested lung tissue. South Med J 89:380–385

    Article  CAS  PubMed  Google Scholar 

  61. Kishimoto T (1992) Intensity of exposure to asbestos in metropolitan Kure City as estimated by autopsied cases. Cancer 69:2598–2602

    Article  CAS  PubMed  Google Scholar 

  62. Arenas-Huertero FJ, Salazar-Flores M, Osornio-Vargas AR (1994) Ferruginous bodies as markers of environmental exposure to inorganic particles: experience with 270 autopsy cases in Mexico. Environ Res 64:10–17

    Article  CAS  PubMed  Google Scholar 

  63. Monso EA, Texido A, Lopez D, Aguilar X, Fiz J, Ruiz J, Rosell A, Vaquero M, Morera J (1995) Asbestos bodies in normal lung of western Mediterranean population with no occupational exposure to inorganic dust. Arch Environ Health 50:305–311

    Article  CAS  PubMed  Google Scholar 

  64. Sebastien P, Fondimare A, Bignon J, Monchaux G, Desbordes J, Bonnaud G (1977) Topographic distribution of asbestos fibres in human lung in relation to occupational and non-occupational exposure. In: Walton WH (ed) Inhaled particles, vol IV. Pergamon Press, Oxford, pp 435–446

    Google Scholar 

  65. Gylseth B, Baunan R (1981) Topographic and size distribution of asbestos bodies in exposed human lungs. Scand J Work Environ Health 7:190–195

    Article  CAS  PubMed  Google Scholar 

  66. Morgan A, Holmes A (1983) Distribution and characteristics of amphibole asbestos fibres, measured with the light microscope, in the left lung of an insulation worker. Br J Ind Med 40:45–50

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Morgan A, Holmes A (1984) The distribution and characteristics of asbestos fibers in the lungs of Finnish anthophyllite mine-workers. Environ Res 33:62–75

    Article  CAS  PubMed  Google Scholar 

  68. Pinkerton KE, Plopper CG, Mercer RR, Roggli VL, Patra AL, Brody AR, Crapo JD (1986) Airway branching patterns influence asbestos fiber location and the extent of tissue injury in the pulmonary parenchyma. Lab Invest 55:688–695

    CAS  PubMed  Google Scholar 

  69. Um CH (1971) Study of the secular trend in asbestos bodies in lungs in London, 1936-1966. Br Med J 2:248–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Selikoff IJ, Hammond EC (1970) Asbestos bodies in the New York City population in two periods of time. In: Shapiro HA (ed) Pneumoconiosis: proceedings of the international conference, Johannesburg, 1969. Oxford University Press, Capetown, pp 99–105

    Google Scholar 

  71. Churg A (1982) Fiber counting and analysis in the diagnosis of asbestos-related disease. Hum Pathol 13:381–392

    Article  CAS  PubMed  Google Scholar 

  72. Vollmer RT, Roggli VL (1985) Asbestos body concentrations in human lung: predictions from asbestos body counts in tissue sections with a mathematical model. Hum Pathol 16:713–718

    Article  CAS  PubMed  Google Scholar 

  73. Williams MG Jr, Dodson RF, Corn C, Hurst GA (1982) A procedure for the isolation of amosite asbestos and ferruginous bodies from lung tissue and sputum. J Toxicol Environ Health 10:627–638

    Article  CAS  PubMed  Google Scholar 

  74. Warnock ML, Prescott BT, Kuwahara TJ (1982) Correlation of asbestos bodies and fibers in lungs of subjects with and without asbestosis. Scan Electron Microsc 11:845–857

    Google Scholar 

  75. Warnock ML, Kuwahara TJ, Wolery G (1983) The relation of asbestos burden to asbestosis and lung cancer. Pathol Annu 18(2):109–145

    PubMed  Google Scholar 

  76. Roggli VL, Pratt PC, Brody AR (1986) Asbestos content of lung tissue in asbestos associated diseases: a study of 110 cases. Br J Ind Med 43:18–28

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ehrlich A, Suzuki Y (1987) A rapid and simple method of extracting asbestos bodies from lung tissue by cytocentrifugation. Am J Ind Med 11:109–116

    Article  CAS  PubMed  Google Scholar 

  78. Manke J, Rodelsperger K, Brtickel B, Woitowitz H-J (1987) Evaluation and application of a plasma ashing method for STEM fiber analysis in human lung tissue. Am Ind Hyg Assoc J 48:730–738

    Article  CAS  PubMed  Google Scholar 

  79. Gylseth B, Baunan RH, Overaae L (1982) Analysis of fibres in human lung tissue. Br J Ind Med 39:191–195

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Castro-Cordoba F, Arenas-Huertero F, Salazar-Flores M, Osornio-Vargas A (1993) Modification of the Smith and Naylor technique for the identification of ferruginous bodies. Arch Med Res 24:199–201

    CAS  PubMed  Google Scholar 

  81. Corn CJ, Williams MG Jr, Dodson RF (1987) Electron microscopic analysis of residual asbestos remaining in preparative vials following bleach digestion. J Electron Microsc Tech 6:1–6

    Article  Google Scholar 

  82. Gylseth B, Churg A, Davis JMG, Johnson N, Morgan A, Mowe G, Rogers A, Roggli V (1985) Analysis of asbestos fibers and asbestos bodies in tissue samples from human lung: an international interlaboratory trial. Scand J Work Environ Health 11:107–110

    Article  CAS  PubMed  Google Scholar 

  83. Velasco-Garcia M-I, Cruz M-J, Ruano L, Montero M-A, Freixa A, Ferrer J (2011) Reproducibility of asbestos body counts in digestions of autopsy and surgical lung tissue. Am J Ind Med 54:597–602

    Article  CAS  PubMed  Google Scholar 

  84. Mollo F, Cravello M, Andreozzi A, Burlo P, Bo P, Attanasio A, De Giuli P (2000) Asbestos body burden in decomposed human lungs. Am J Forensic Med Pathol 21:148–150

    Article  CAS  PubMed  Google Scholar 

  85. Gloyne SR (1933) The morbid anatomy and histology of asbestosis. Tubercle 14:550–558

    Article  CAS  Google Scholar 

  86. Godwin MC, Jagatic J (1970) Asbestos and mesotheliomas. Environ Res 3:391–416

    Article  Google Scholar 

  87. Roggli VL, Benning TL (1990) Asbestos bodies in pulmonary hilar lymph nodes. Mod Pathol 3:513–517

    CAS  PubMed  Google Scholar 

  88. Dodson RF, Huang J, Bruce JR (2000) Asbestos content in the lymph nodes of nonoccupationally exposed individuals. Am J Ind Med 37:169–174

    Article  CAS  PubMed  Google Scholar 

  89. Dodson RF, Shepherd S, Levin J, Hammar SP (2007) Characteristics of asbestos concentration in lung as compared to asbestos concentration in various levels of lymph nodes that collect drainage from the lung. Ultrastruct Pathol 31:95–133

    Article  PubMed  Google Scholar 

  90. Roggli VL, Piantadosi CA, Bell DY (1986) Asbestos bodies in bronchoalveolar lavage fluid: a study of 20 asbestos-exposed individuals and comparison to patients with other chronic interstitial lung diseases. Acta Cytol 30:470–476

    CAS  PubMed  Google Scholar 

  91. Auerbach O, Conston AS, Garfinkel L, Parks VR, Kaslow HD, Hammond EC (1980) Presence of asbestos bodies in organs other than the lung. Chest 77:133–137

    Article  CAS  PubMed  Google Scholar 

  92. Kobayashi H, Ming ZW, Watanabe H, Ohnishi Y (1987) A quantitative study on the distribution of asbestos bodies in extrapulmonary organs. Acta Pathol Jpn 37:375–383

    CAS  PubMed  Google Scholar 

  93. Dodson RF, O’Sullivan MF, Huang J, Holiday DB, Hammar SP (2000) Asbestos in extrapulmonary sites: omentum and mesentery. Chest 117:486–493

    Article  CAS  PubMed  Google Scholar 

  94. Roggli VL, Greenberg SD, McLarty JL, Hurst GA, Spivey CG, Hieger LR (1980) Asbestos body content of the larynx in asbestos workers. Arch Otolaryngol 106:553–555

    Article  Google Scholar 

  95. Ehrlich A, Rohl AN, Holstein EC (1985) Asbestos bodies in carcinoma of colon in an insulation worker with asbestosis. JAMA 254:2932–2933

    Article  CAS  PubMed  Google Scholar 

  96. Rosen P, Savino A, Melamed M (1974) Ferruginous (asbestos) bodies and primary cancer of the colon. Am J Clin Pathol 61:135–138

    Article  CAS  PubMed  Google Scholar 

  97. Holt PF (1981) Transport of inhaled dust to extrapulmonary sites. J Pathol 133:123–129

    Article  CAS  PubMed  Google Scholar 

  98. Lee KP, Barras CE, Griffith FD, Waritz RS, Lapin CA (1981) Comparative pulmonary responses to inhaled inorganic fibers with asbestos and fiberglass. Environ Res 24:167–191

    Article  CAS  PubMed  Google Scholar 

  99. Pooley FD (1972) Asbestos bodies, their formation, composition and character. Environ Res 5:363–379

    Article  CAS  PubMed  Google Scholar 

  100. Langer AM, Rubin IB, Selikoff IJ (1972) Chemical characterization of asbestos body cores by electron microprobe analysis. J Histochem Cytochem 20:723–734

    Article  CAS  PubMed  Google Scholar 

  101. Murai Y, Kitagawa M, Hiraoka T (1995) Asbestos body formation in the human lung: distinctions, by type and size. Arch Environ Health 50:19–25

    Article  CAS  PubMed  Google Scholar 

  102. Dodson RF, O’Sullivan M, Corn CJ (1996) Relationships between ferruginous bodies and uncoated asbestos fibers in lung tissue. Arch Environ Health 51:462–466

    Article  CAS  PubMed  Google Scholar 

  103. Churg AM, Warnock ML (1979) Analysis of the cores of ferruginous (asbestos) bodies from the general population: III. Patients with environmental exposure. Lab Invest 40:622–626

    CAS  PubMed  Google Scholar 

  104. Miller A, Teirstein AS, Bader MD, Bader RA, Selikoff IJ (1971) Talc pneumoconiosis: significance of sublight microscopic mineral particles. Am J Med 50:395–402

    Article  CAS  PubMed  Google Scholar 

  105. Craighead JE, Mossman BT (1982) Pathogenesis of asbestos-associated diseases. N Engl J Med 306:1446–1455

    Article  CAS  PubMed  Google Scholar 

  106. Roggli VL, Brody AR (1988) Imaging techniques for application to lung toxicology. In: Gardner DE, Crapo JD, Massaro EJ (eds) Toxicology of the lung. Raven Press, New York, pp 117–145

    Google Scholar 

  107. Woitowitz H-J, Manke J, Brückel B, Rödelsperger K (1986) Ferruginous bodies as evidence of occupational endangering by chrysotile asbestos? Zbl Arbeitsmed Bd 36:354–364

    Google Scholar 

  108. Moulin E, Yourassowsky N, Dumortier P, De Vuyst P, Yernault JC (1988) Electron microscopic analysis of asbestos body cores from the Belgian urban population. Eur Respir J 1:818–822

    CAS  PubMed  Google Scholar 

  109. Holden J, Churg A (1986) Asbestos bodies and the diagnosis of asbestosis in chrysotile workers. Environ Res 39:232–236

    Article  CAS  PubMed  Google Scholar 

  110. Case B (1994) Biological indicators of chrysotile exposure. Ann Occup Hyg 38:503–518

    CAS  PubMed  Google Scholar 

  111. De Klerk NH, Musk AW, Williams V, Filion PR, Whitaker D, Shilkin KB (1996) Comparison of measures of exposure to asbestos in former crocidolite workers from Wittenoom Gorge, W. Australia. Am J Ind Med 30:579–587

    Article  PubMed  Google Scholar 

  112. Karjalainen A, Nurminen M, Vanhala E, Vainio H, Anttila S (1996) Pulmonary asbestos bodies and asbestos fibers as indicators of exposure. Scand J Work Environ Health 22:34–38

    Article  CAS  PubMed  Google Scholar 

  113. Crouch E, Churg A (1984) Ferruginous bodies and the histologic evaluation of dust exposure. Am J Surg Pathol 8:109–116

    Article  CAS  PubMed  Google Scholar 

  114. Butnor KJ, Roggli VL (2011) Pneumoconioses, Ch 9. In: Leslie KO, Wick MR (eds) Practical pulmonary pathology, 2nd edn. Elsevier, New York, pp 311–337

    Google Scholar 

  115. Gross P, Tuma J, de Treville RTP (1971) Unusual ferruginous bodies: their formation from non-fibrous particulates and from carbonaceous fibrous particles. Arch Environ Health 22:534–537

    Article  Google Scholar 

  116. Roggli VL, Mastin JP, Shelburne JD, Roe MS, Brody AR (1983) Inorganic particulates in human lung. Relationship to the inflammatory response. In: Lynn WS (ed) Inflammatory cells and lung disease. CRC Press, Inc, Boca Raton, pp 29–62

    Google Scholar 

  117. Ramage JE, Roggli VL, Bell DY, Piantadosi CA (1988) Interstitial pneumonitis and fibrosis associated with domestic wood burning. Am Rev Respir Dis 137:1229–1232

    Article  PubMed  Google Scholar 

  118. Roggli VL (1986) Analytical scanning electron microscopy in the investigation of unusual exposures. In: Romig AD Jr, Chambers WF (eds) Microbeam analysis. San Francisco Press, Inc, San Francisco, pp 586–588

    Google Scholar 

  119. Donaldson K, Murphy FA, Duffin R, Poland CA (2010) Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7:5–21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Dodson RF, O’Sullivan MF, Corn CJ, Williams MG Jr, Hurst GA (1985) Ferruginous body formation on a nonasbestos mineral. Arch Pathol Lab Med 109:849–852

    CAS  PubMed  Google Scholar 

  121. Roggli VL, McGavran MH, Subach JA, Sybers HD, Greenberg SD (1982) Pulmonary asbestos body counts and electron probe analysis of asbestos body cores in patients with mesothelioma: a study of 25 cases. Cancer 50:2423–2432

    Article  CAS  PubMed  Google Scholar 

  122. Wright GW, Kuschner M (1977) The influence of varying lengths of glass and asbestos fibres on tissue response in guinea pigs. In: Walton WH (ed) Inhaled particles IV. Pergamon Press, Oxford, pp 455–474

    Google Scholar 

  123. Morgan A, Holmes A, Davison W (1982) Clearance of sized glass fibres from the rat lung and their solubility in vivo. Ann Occup Hyg 25:317–331

    CAS  PubMed  Google Scholar 

  124. Mast RW, McConnell EE, Anderson R, Chevalier J, Kotin P, Bernstein DM, Thevenaz P, Glass LR, Miller WC, Hesterberg TW (1995) Studies on the chronic toxicity (inhalation) of four types of refractory ceramic fiber in male Fischer 344 rats. Inhal Toxicol 7:425–467

    Article  CAS  PubMed  Google Scholar 

  125. Dumortier P, Broucke I, De Vuyst P (2001) Pseudoasbestos bodies and fibers in bronchoalveolar lavage of refractory ceramic fiber users. Am J Respir Crit Care Med 164:499–503

    Article  CAS  PubMed  Google Scholar 

  126. Sebastien P, Gaudichet A, Bignon J, Baris YI (1981) Zeolite bodies in human lungs from Turkey. Lab Invest 44:420–425

    CAS  PubMed  Google Scholar 

  127. Kliment CR, Clemens K, Oury TD (2009) North American erionite-associated mesothelioma with pleural plaques and pulmonary fibrosis: a case report. Int J Clin Exp Pathol 2:407–410

    PubMed  Google Scholar 

  128. Hayashi H, Kajita A (1988) Silicon carbide in lung tissue of a worker in the abrasive industry. Am J Ind Med 14:145–155

    Article  CAS  PubMed  Google Scholar 

  129. Funahashi A, Schlueter DP, Pintar K, Siegesmund KA, Mandel GS, Mandel NS (1984) Pneumoconiosis in workers exposed to silicon carbide. Am Rev Respir Dis 129:635–640

    CAS  PubMed  Google Scholar 

  130. Dufresne A, Loosereewanich P, Armstrong B, Infante-Rivard C, Perrault G, Dion C, Masse S, Begin R (1995) Pulmonary retention of ceramic fibers in silicon carbide (SiC) workers. Am Ind Hyg Assoc J 56:490–498

    Article  CAS  PubMed  Google Scholar 

  131. Ghio AJ, Funkhouser W, Pugh CB, Winters S, Stonehuerner JD, Mahar AM, Roggli VL (2006) Pulmonary fibrosis and ferruginous bodies associated with exposure to synthetic fibers. Toxicol Pathol 34:723–729

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor L. Roggli MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roggli, V.L. (2014). Asbestos Bodies and Non-asbestos Ferruginous Bodies. In: Oury, T., Sporn, T., Roggli, V. (eds) Pathology of Asbestos-Associated Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41193-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41193-9_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41192-2

  • Online ISBN: 978-3-642-41193-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics