Statistical Person Verification Using Behavioral Patterns from Complex Human Motion

  • Felipe Gomez-Caballero
  • Takahiro Shinozaki
  • Sadaoki Furui
  • Koichi Shinoda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8158)


We propose a person verification method based on behavioral patterns from complex human movements. Behavioral patterns are represented by anthropometric and kinematic features of human body motion acquired by a Kinect RGBD sensor. We focus on complex movements to demonstrate that independent and rhythmic movement of body parts carries a significant amount of behavioral information. We take a statistical approach by Gaussian mixture models to model the individual behavioral patterns. We demonstrate that subject-preferred movements are more robust against forgery attacks and variations over time than predetermined subject-independent movements. The obtained equal error rate was 15.7% when using subject-preferred movements and 27.3% when using a predefined sequence of movements.


person verification individuality human movement GMM 


  1. 1.
    Aqmar, M., Shinoda, K., Furui, S.: Robust Gait-Based Person Identification against Walking Speed Variations. IEICE on Information and Systems 95, 668–676 (2012)CrossRefGoogle Scholar
  2. 2.
    Chow, J.Y., Davids, K.W., Button, C., Rein, R.: Dynamics of movement patterning in learning a discrete multiarticular action. Motor Control: The Int. Journal for the Multidisciplinary Study of Voluntary Movement 12(3), 219–240 (2008)Google Scholar
  3. 3.
    Daprati, E., Wriessnegger, S., Lacquaniti, F.: Kinematic cues and recognition of self-generated actions. Experimental Brain Research 177(1), 31–44 (2007)CrossRefGoogle Scholar
  4. 4.
    Fernandez-Baena, A., et al.: Biomechanical validation of upper-body and lower-body joint movements of kinect motion capture data for rehabilitation treatments. In: Intelligent Networking and Collaborative Systems 2012, pp. 656–661 (2012)Google Scholar
  5. 5.
    Furui, S.: 40 Years of Progress in Automatic Speaker Recognition. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 1050–1059. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Gales, M.J.F., Woodland, P.C.: Mean and Variance Adaptation within the MLLR Framework. Computer Speech Language 10(4), 249–264 (1996)CrossRefGoogle Scholar
  7. 7.
    Gomez-Caballero, F., Shinozaki, T., Furui, S.: User Identification Using Time-of-Flight Camera Image Streams. IPSJ Technical Report vol. 2, 615–616 (2010)Google Scholar
  8. 8.
    Gomez-Caballero, F., Shinozaki, T., Furui, S., Shinoda, K.: Person Authentication Using 3D Human Motion. In: Proc. of the 2011 Joint ACM Workshop on Human Gesture and Behavior Understanding, J-HGBU 2011, pp. 35–40. ACM (2011)Google Scholar
  9. 9.
    Jain, A., Ross, A., Prabhakar, S.: An Introduction to Biometric Recognition. IEEE Trans. on Circuits and Systems for Video Technology 14(1), 4–20 (2004)CrossRefGoogle Scholar
  10. 10.
    Kato, K., et al.: Exploring analysis of football actions considering correlation of joints in the body. In: 2012 Int. Conference on Networked Sensing Systems (2012)Google Scholar
  11. 11.
    Knoblich, G., Prinz, W.: Recognition of Self-Generated Actions From Kinematic Displays of Drawing. Journal of Experimental Psychology: Human Perception and Performance 27(2) (2001)Google Scholar
  12. 12.
    Leggetter, C.J., Woodland, P.C.: Flexible Speaker Adaptation Using Maximum Likelihhod Linear Regression. In: Proc. ARPA Spoken Language Technology Workshop, vol. 9, pp. 110–115 (1995)Google Scholar
  13. 13.
    Leggetter, C.J., Woodland, P.C.: Maximum Likelihood Linear Regression for Speaker Adaptation of Continuous Density hidden Markov models. Computer Speech & Language 9(2), 171–185 (1995)CrossRefGoogle Scholar
  14. 14.
    Lin, J.L., Hsu, H.L., Jong, T.L., Hsu, W.H.: Biometric Authentication. In: Pattern Recognition, Machine Intelligence and Biometrics, pp. 607–631. Springer (2011)Google Scholar
  15. 15.
    Munsell, B.C., Temlyakov, A., Qu, C., Wang, S.: Person identification using full-body motion and anthropometric biometrics from kinect videos. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012 Ws/Demos, Part III. LNCS, vol. 7585, pp. 91–100. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Pratheepan, Y., Torr, P., Condell, J.V., Prasad, G.: Body Language Based Individual Identification in Video Using Gait and Actions. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2008 2008. LNCS, vol. 5099, pp. 368–377. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Pratheepan, Y., et al.: Style of Action Based Individual Recognition in Video Sequences. In: Systems, Man and Cybernetics, pp. 1237–1242 (2008)Google Scholar
  18. 18.
    Reynolds, D.A.: Automatic Speaker Recognition using Gaussian Mixture Speaker Models. The Lincoln Laboratory Journal, 173–192 (1995)Google Scholar
  19. 19.
    Reynolds, D.A., Quatieri, T.F., Dunn, R.B.: Speaker Verification Using Adapted Gaussian Mixture Models. Digital Signal Processing 10(1-3), 19–41 (2000)CrossRefGoogle Scholar
  20. 20.
    Tokuyama, M., et al.: Individuality and reproducibility in high-speed motion of volleyball spike jumps by phase-matching and averaging. Journal of Biomechanics 38(10), 2050–2057 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Felipe Gomez-Caballero
    • 1
  • Takahiro Shinozaki
    • 1
  • Sadaoki Furui
    • 1
  • Koichi Shinoda
    • 1
  1. 1.Tokyo Institute of TechnologyTokyoJapan

Personalised recommendations