JAR-Aibo: A Multi-view Dataset for Evaluation of Model-Free Action Recognition Systems

  • Marco Körner
  • Joachim Denzler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8158)


We present a novel multi-view dataset for evaluating model-free action recognition systems. Superior to existing datasets, it covers 56 distinct action classes. Each of them was performed ten times by remotely controlled Sony ERS-7 AIBO robot dogs observed by six distributed and synchronized cameras at 17 fps and VGA resolution. In total, our dataset contains 576 sequences. Baseline results show its applicability for benchmarking model-free action recognition methods.


action recognition behaviour understanding dataset 


  1. 1.
    Aggarwal, J.K., Ryoo, M.S.: Human activity analysis: A review. ACM Computing Surveys 43(3), 16:1–16:43 (2011)Google Scholar
  2. 2.
    Blunsden, S., Fisher, B.R.: The behave video dataset: ground truthed video for multi-person behavior classification. Annals of the BMVA (4), 1–11 (2010)Google Scholar
  3. 3.
    Chaquet, J.M., Carmona, E.J., Fernández-Caballero, A.: A survey of video datasets for human action and activity recognition. Computer Vision and Image Understanding 117(6), 633–659 (2013)CrossRefGoogle Scholar
  4. 4.
    Denina, G., Bhanu, B., Nguyen, H., Ding, C., Kamal, A., Ravishankar, C., Roy-Chowdhury, A., Ivers, A., Varda, B.: Videoweb dataset for multi-camera activities and non-verbal communication. In: Bhanu, B., Ravishankar, C.V., Roy-Chowdhury, A.K., Aghajan, H., Terzopoulos, D. (eds.) Distributed Video Sensor Networks, pp. 335–347 (2011)Google Scholar
  5. 5.
    Fisher, R.B.: The pets04 surveillance ground truth data set. In: Proceedings of the 6th IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (PETS 2004), pp. 1–5 (2004)Google Scholar
  6. 6.
    Gkalelis, N., Kim, H., Hilton, A., Nikolaidis, N., Pitas, I.: The i3dpost multi-view and 3D human action/interaction database. In: Proceedings of the 2009 Conference for Visual Media Production, pp. 159–168 (2009)Google Scholar
  7. 7.
    Gorelick, L., Blank, M., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 29(12), 2247–2253 (2007)CrossRefGoogle Scholar
  8. 8.
    Körner, M., Denzler, J.: Temporal self-similarity for appearance-based action recognition in multi-view setups ((to appear)). In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013, Part I. LNCS, vol. 8047, pp. 163–171. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: Proceedings of the 21st IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2008)Google Scholar
  10. 10.
    Liu, J., Luo, J., Shah, M.: Recognizing realistic actions from videos ”in the wild”. In: Proceedings of the 2nd IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1996–2003 (2009)Google Scholar
  11. 11.
    Marszalek, M., Laptev, I., Schmid, C.: Actions in context. In: Proceedings of the 22nd IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2929–2936 (2009)Google Scholar
  12. 12.
    Nierobisch, T., Hoffmann, F.: Appearance based pose estimation of aibo’s. In: IEEE Conference on Mechatronics and Robotics, vol. 3, pp. 942–947 (2004)Google Scholar
  13. 13.
    Patron, A., Marszalek, M., Zisserman, A., Reid, I.: High five: Recognising human interactions in tv shows. In: Proceedings of the 21st British Machine Vision Conference (BMVA), pp. 50.1–50.11 (2010)Google Scholar
  14. 14.
    Poppe, R.: A survey on vision-based human action recognition. Image and Vision Computing 28(6), 976–990 (2010)CrossRefGoogle Scholar
  15. 15.
    Rodriguez, M., Ahmed, J., Shah, M.: Action mach a spatio-temporal maximum average correlation height filter for action recognition. In: Proceedings of the 21st IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2008)Google Scholar
  16. 16.
    Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local svm approach. In: Proceedings of the 17th International Conference on Pattern Recognition (ICPR), vol. 3, pp. 32–36 (2004)Google Scholar
  17. 17.
    Singh, S., Velastin, S., Ragheb, H.: Muhavi: A multicamera human action video dataset for the evaluation of action recognition methods. In: Proceedings of the 7th IEEE International Conference on Advanced Video and Signal-Based Surveillance (AVSS), pp. 48–55 (2010)Google Scholar
  18. 18.
    Wang, Y., Huang, K., Tan, T.: Human activity recognition based on r transform. In: Proceedings of the 20th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2007)Google Scholar
  19. 19.
    Weinland, D., Boyer, E., Ronfard, R.: Action recognition from arbitrary views using 3d exemplars. In: Proceedings of the 11th IEEE International Conference on Computer Vision (ICCV), pp. 1–7 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marco Körner
    • 1
  • Joachim Denzler
    • 1
  1. 1.Computer Vision GroupFriedrich Schiller University of JenaJenaGermany

Personalised recommendations