Advertisement

User-Oriented Social Analysis across Social Media Sites

  • Ming Yan
  • Zhengyu Deng
  • Jitao Sang
  • Changsheng Xu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8158)

Abstract

The vast amount of user-generated data in various and disparate social media sites contains rich and diverse information about what is happening around the world. Digging into such user-generated data distributed in different social media sites helps us better understand what people are interested in and how they feel about certain topics. In this paper, we investigate into users’ behavior data in Twitter and YouTube to figure out whether people’s attention on certain topics has some sort of temporal order between Twitter and YouTube on user level. We collected a real world dataset of 8,518 users with account associations between Twitter and YouTube as well as all their behavior data with timestamp since Jan. 2012. The results demonstrate that more users tend to get access to certain events earlier in Twitter than in YouTube and the ratio is somewhat topic-sensitive.

Keywords

temporal cross-network user-oriented social behavior analysis 

References

  1. 1.
    Ahn, Y.Y., Han, S., Kwak, H., Moon, S., Jeong, H.: Analysis of topological characteristics of huge online social networking services. In: Proceedings of the 16th International Conference on World Wide Web, pp. 835–844. ACM (2007)Google Scholar
  2. 2.
    Lerman, K., Ghosh, R.: Information contagion: An empirical study of the spread of news on digg and twitter social networks. In: Proceedings of 4th International Conference on Weblogs and Social Media, ICWSM (2010)Google Scholar
  3. 3.
    Carmagnola, F., Cena, F.: User identification for cross-system personalisation. Information Sciences, 16–32 (2009)Google Scholar
  4. 4.
    Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: 2009 30th IEEE Symposium on Security and Privacy, pp. 173–187. IEEE (2009)Google Scholar
  5. 5.
    Abel, F., Araújo, S., Gao, Q., Houben, G.-J.: Analyzing cross-system user modeling on the social web. In: Auer, S., Díaz, O., Papadopoulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp. 28–43. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Abel, F., Gao, Q., Houben, G.-J., Tao, K.: Semantic enrichment of twitter posts for user profile construction on the social web. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part II. LNCS, vol. 6644, pp. 375–389. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Roy, S.D., Mei, T., Zeng, W., Li, S.: Socialtransfer: cross-domain transfer learning from social streams for media applications. In: ACM Multimedia, pp. 649–658 (2012)Google Scholar
  8. 8.
    Becker, H., Iter, D., Naaman, M., Gravano, L.: Identifying content for planned events across social media sites. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, pp. 533–542. ACM (2012)Google Scholar
  9. 9.
    Osborne, M., Petrovic, S., McCreadie, R., Macdonald, C., Ounis, I.: Bieber no more: First story detection using twitter and wikipedia. In: SIGIR 2012 Workshop on Time-Aware Information Access (2012)Google Scholar
  10. 10.
    Yang, J., Leskovec, J.: Patterns of temporal variation in online media. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, pp. 177–186. ACM (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ming Yan
    • 1
    • 2
  • Zhengyu Deng
    • 1
    • 2
  • Jitao Sang
    • 1
    • 2
  • Changsheng Xu
    • 1
    • 2
  1. 1.National Lab of Pattern Recognition, Institute of AutomationCASBeijingChina
  2. 2.China-Singapore Institute of Digital MediaSingaporeSingapore

Personalised recommendations