Advertisement

Tracking Posture and Head Movements of Impaired People During Interactions with Robots

  • Salvatore Maria Anzalone
  • Mohamed Chetouani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8158)

Abstract

Social robots are starting to be used in assistive scenarios as natural tool to help impaired people in their daily life activities and in rehabilitation activities. A central problem of such kind of systems is the tracking of humans activity in a reliable way. The system presented in this paper tries to address this problem through the use of an RGB-D sensor. State of art algorithms are used to detect and track the body posture and the heads pose of each human partner.

Keywords

People tracking posture estimation head orientation human-robot interaction 

References

  1. 1.
    Anzalone, S.M., Ghidoni, S., Menegatti, E., Pagello, E.: A multimodal distributed intelligent environment for a safer home. In: Lee, S., Cho, H., Yoon, K.-J., Lee, J. (eds.) Intelligent Autonomous Systems 12. AISC, vol. 193, pp. 775–785. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Asada, M., Hosoda, K., Kuniyoshi, Y., Ishiguro, H., Inui, T., Yoshikawa, Y., Ogino, M., Yoshida, C.: Cognitive developmental robotics: a survey. IEEE Transactions on Autonomous Mental Development 1(1), 12–34 (2009)CrossRefGoogle Scholar
  3. 3.
    Breazeal, C.: Toward sociable robots. Robotics and Autonomous Systems 42(3-4) (2003)Google Scholar
  4. 4.
    Breazeal, C.: Designing sociable robots. The MIT Press (2004)Google Scholar
  5. 5.
    Cesta, A., Cortellessa, G., Giuliani, M.V., Pecora, F., Scopelliti, M., Tiberio, L.: Psychological implications of domestic assistive technology for the elderly. PsychNology Journal 5(3), 229–252 (2007)Google Scholar
  6. 6.
    Cochet, H., Vauclair, J.: Pointing gesture in young children. Gesture and Multimodal Development, p. 7 (2012)Google Scholar
  7. 7.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(6), 681–685 (2001)CrossRefGoogle Scholar
  8. 8.
    Cristinacce, D., Cootes, T.: Feature detection and tracking with constrained local models. In: Proc. British Machine Vision Conference, vol. 3, pp. 929–938 (2006)Google Scholar
  9. 9.
    Maor, D., Currie, J., Drewry, R.: The effectiveness of assistive technologies for children with special needs: A review of research-based studies. European Journal of Special Needs Education 26(3), 283–298 (2011)CrossRefGoogle Scholar
  10. 10.
    Morency, L.-P., Whitehill, J., Movellan, J.: Generalized adaptive view-based appearance model: Integrated framework for monocular head pose estimation. In: 8th IEEE International Conference on Automatic Face & Gesture Recognition, FG 2008, pp. 1–8. IEEE (2008)Google Scholar
  11. 11.
    Pioggia, G., Igliozzi, R., Ferro, M., Ahluwalia, A., Muratori, F., De Rossi, D.: An android for enhancing social skills and emotion recognition in people with autism. IEEE Transactions on Neural Systems and Rehabilitation Engineering 13(4), 507–515 (2005)CrossRefGoogle Scholar
  12. 12.
    Scassellati, B., Admoni, H., Mataric, M.: Robots for use in autism research. Annual Review of Biomedical Engineering 14, 275–294 (2012)CrossRefGoogle Scholar
  13. 13.
    Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011, pp. 1297–1304. IEEE Computer Society, Washington, DC (2011)Google Scholar
  14. 14.
    Sumioka, H., Hosoda, K., Yoshikawa, Y., Asada, M.: Acquisition of joint attention through natural interaction utilizing motion cues. Advanced Robotics 21(9), 983–999 (2007)CrossRefGoogle Scholar
  15. 15.
    Tapus, A., Mataric, M.J., Scassellati, B.: Socially assistive robotics. IEEE Robotics and Automation Magazine 14(1), 35 (2007)CrossRefGoogle Scholar
  16. 16.
    Yoshikawa, Y., Nakano, T., Asada, M., Ishiguro, H.: Multimodal joint attention through cross facilitative learning based on μx principle. In: 7th IEEE International Conference on Development and Learning, ICDL 2008, pp. 226–231. IEEE (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Salvatore Maria Anzalone
    • 1
  • Mohamed Chetouani
    • 1
  1. 1.Institute of Intelligent Systems and RoboticsUniversity Pierre and Marie CurieParisFrance

Personalised recommendations