Advertisement

Environmental Risk Assessment of Genetically Modified Organisms by a Fuzzy Decision Support System

  • Francesco Camastra
  • Angelo Ciaramella
  • Valeria Giovannelli
  • Matteo Lener
  • Valentina Rastelli
  • Antonino Staiano
  • Giovanni Staiano
  • Alfredo Starace
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8158)

Abstract

Aim of the paper is the development of a Fuzzy Decision Support System (FDSS) for the Environmental Risk Assessment (ERA) of the deliberate release of genetically modified plants. The evaluation process permits identifying potential impacts that can achieve one or more receptors through a set of migration paths. ERA process is often performed in presence of incomplete and imprecise data and is generally yielded using the personal experience and knowledge of the human experts. Therefore the risk assessment in the FDSS is obtained by using a Fuzzy Inference System (FIS), performed using jFuzzyLogic library. The decisions derived by FDSS have been validated on real world cases by the human experts that are in charge of ERA. They have confirmed the reliability of the fuzzy support system decisions.

Keywords

Fuzzy Support Decision Systems Risk Assessment Genetically Modified Organisms Fuzzy Control Language jFuzzyLogic library 

References

  1. 1.
    Chen, Y.-L., Weng, C.-H.: Mining fuzzy association rules from questionnaire data. Knowledge-Based Systems 22, 46–56 (2009)CrossRefGoogle Scholar
  2. 2.
    Chen, Z., Zhao, L., Lee, K.: Environmental risk assessment of offshore produced water discharges using a hybrid fuzzy-stochastic modeling approach. Environmental Modelling & Software 25, 782–792 (2010)CrossRefGoogle Scholar
  3. 3.
    Ciaramella, A., Tagliaferri, R., Pedrycz, W.: The genetic development of ordinal sums. Fuzzy Sets and Systems 151(2), 303–325 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cingolani, P., Fdez, J.A.: jFuzzyLogic: A Robust and Flexible Fuzzy-Logic Inference System Language Implementation. In: Proceedings of IEEE World Congress on Computational Intelligence 2012 (2012)Google Scholar
  5. 5.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press (2009)Google Scholar
  6. 6.
    Davidson, V.J., Ryks, J., Fazil, A.: Fuzzy risk assessment tool for microbial hazards in food systems. Fuzzy Sets and Systems 157, 1201–1210 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Guimara, A.C.F., Lapa, C.M.F.: Fuzzy inference to risk assessment on nuclear engineering systems. Applied Soft Computing 7, 17–28 (2007)CrossRefGoogle Scholar
  8. 8.
    Kahraman, C., Kaya, I.: Fuzzy Process Accuracy Index to Evaluate Risk Assessment of Drought Effects in Turkey. Human and Ecological Risk Assessment 15, 789–810 (2009)CrossRefGoogle Scholar
  9. 9.
    Karimi, I., Hullermeier, E.: Risk assessment system of natural hazards: A new approach based on fuzzy probability. Fuzzy Sets and Systems 158, 987–999 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    International Electrotechnical Commission technical committee industrial process measurement and control2. IEC 61131 - Programmable Controllers. Part 7: Fuzzy Control Programming. IEC 2000 (2000)Google Scholar
  11. 11.
    Li, W., Zhou, J., Xie, K., Xiong, X.: Power System Risk Assessment Using a Hybrid Method of Fuzzy Set and Monte Carlo Simulation. IEEE Transactions on Power Systems 23(2) (2008)Google Scholar
  12. 12.
    Lin, C.-T., Lee, C.S.: Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems. Prentice Hall (1996)Google Scholar
  13. 13.
    Ngai, E.W.T., Wat, F.K.T.: Design and development of a fuzzy expert system for hotel selection. Omega 31, 275–286 (2003)CrossRefGoogle Scholar
  14. 14.
    Parr, T.J., Quong, R.W.: Software: Practice and Experience 25(7), 789–810 (1995)Google Scholar
  15. 15.
    Sadiqa, R., Husain, T.: A fuzzy-based methodology for an aggregative environmental risk assessment: A case study of drilling waste. Environmental Modelling & Software 20, 33–46 (2005)CrossRefGoogle Scholar
  16. 16.
    Sorlini, C., Buiatti, M., Burgio, G., Cellini, F., Giovannelli, V., Lener, M., Massari, G., Perrino, P., Selva, E., Spagnoletti, A., Staiano, G.: La valutazione del rischio ambientale dell’ immissione deliberata nell’ ambiente di organismi geneticamente modificati. Tech. Report (2003) (in Italian), http://bch.minambiente.it/EN/Biosafety/propmet.asp
  17. 17.
    Wang, Y.-M., Elhag, T.M.S.: An adaptive neuro-fuzzy inference system for bridge risk assessment. Expert Systems with Applications 34, 3099–3106 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Francesco Camastra
    • 1
  • Angelo Ciaramella
    • 1
  • Valeria Giovannelli
    • 2
  • Matteo Lener
    • 2
  • Valentina Rastelli
    • 2
  • Antonino Staiano
    • 1
  • Giovanni Staiano
    • 2
  • Alfredo Starace
    • 1
  1. 1.Dept. of Science and TechnologyUniversity of Naples ParthenopeNapoliItaly
  2. 2.Nature Protection Dept.Institute for Environmental Protection and Research (ISPRA)Roma

Personalised recommendations