Pardiff: Inference of Differential Expression at Base-Pair Level from RNA-Seq Experiments

  • Bogdan Mirauta
  • Pierre Nicolas
  • Hugues Richard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8158)


In the field of RNA-Seq transcriptomics, detecting differences in expression levels between two data-sets remains a challenging question. Most current methods consider only point estimates of the expression levels, and thus neglect the uncertainty of these estimates. Further, testing for differential expression is often done on predefined regions. Here, we propose Pardiff, a method that reconstructs the profile of differential expression at a base-pair resolution and incorporate uncertainty via the use of a Bayesian framework. This method is built on our approach, Parseq, to infer the transcriptional landscape from RNA-seq data.

A program, named Pardiff, implements this strategy and will be made available at:


Fold Change Positive Predictive Value Posterior Distribution Fold Change Threshold Transcriptional Landscape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anders, S., Huber, W.: Differential expression analysis for sequence count data. Genome Biology 11(10), R106 (2010), CrossRefGoogle Scholar
  2. 2.
    Andrieu, C., Doucet, A., Holenstein, R.: Particle markov chain monte carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 72(3), 269–342 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bolstad, B., Irizarry, R., Åstrand, M., Speed, T.: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19(2), 185–193 (2003)CrossRefGoogle Scholar
  4. 4.
    Bullard, J., Purdom, E., Hansen, K., Dudoit, S.: Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 11(1), 94 (2010), CrossRefGoogle Scholar
  5. 5.
    Cherry, J.M., Hong, E.L., et al.: Saccharomyces genome database: the genomics resource of budding yeast. Nucleic Acids Res 40(Database issue), D700–D705 (2012), Google Scholar
  6. 6.
    Clark, T., Schweitzer, A., et al.: Discovery of tissue-specific exons using comprehensive human exon microarrays. Genome Biology 8(4), R64 (2007)Google Scholar
  7. 7.
    DeRisi, J., Bittner, M.: Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat. Genet. 14(4), 457–460 (1996)CrossRefGoogle Scholar
  8. 8.
    van Dijk, E.L., Chen, C.L., et al.: Xuts are a class of xrn1-sensitive antisense regulatory non-coding rna in yeast. Nature 475(7354), 114–117 (2011), CrossRefGoogle Scholar
  9. 9.
    Fieller, E.C.: Some problems in interval estimation. Journal of the Royal Statistical Society. Series B (Methodological) 16(2), 175–185 (1954)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Frazee, A., Jaffe, A., Sabunciyan, S., Leek, J.: Differential expression analysis of rna-seq data at base-pair resolution in multiple biological replicates. Biostatistics (under revision)Google Scholar
  11. 11.
    Guttman, M., Garber, M., Levin, J.Z., Donaghey, J., Robinson, J., Adiconis, X., Fan, L., Koziol, M.J., Gnirke, A., Nusbaum, C., Rinn, J.L., Lander, E.S., Regev, A.: Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nature Biotechnology 28(5), 503–510 (2010), CrossRefGoogle Scholar
  12. 12.
    Li, J., Jiang, H., Wong, W.H.: Modeling non-uniformity in short-read rates in RNA-Seq data. Genome Biol. 11(5), R25 (2010)Google Scholar
  13. 13.
    McCarthy, D.J., Smyth, G.K.: Testing significance relative to a fold-change threshold is a TREAT. Bioinformatics 25(6), 765–771 (2009)CrossRefGoogle Scholar
  14. 14.
    Mirauta, B., Nicolas, P., Richard, H.: Parseq: transcriptional landscape reconstruction from rna-seq data based on state-space models (submitted, 2013)Google Scholar
  15. 15.
    Mortazavi, A., Williams, B.A., et al.: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 5(7), 621–628 (2008), CrossRefGoogle Scholar
  16. 16.
    Nicolas, P., Leduc, A., et al.: Transcriptional landscape estimation from tiling array data using a model of signal shift and drift. Bioinformatics 25(18), 2341–2347 (2009)CrossRefGoogle Scholar
  17. 17.
    Robinson, M.D., McCarthy, D.J., Smyth, G.K.: edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1), 139–140 (2010), CrossRefGoogle Scholar
  18. 18.
    Trapnell, C., Hendrickson, D.G., Sauvageau, M., Goff, L., Rinn, J.L., Pachter, L.: Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotech. 31(1), 46–53 (2013), CrossRefGoogle Scholar
  19. 19.
    Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Wold, B.J., Pachter, L.: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotech. 28(5), 511–515 (2010), CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bogdan Mirauta
    • 1
  • Pierre Nicolas
    • 2
  • Hugues Richard
    • 1
  1. 1.Génomique des microorganismes, UPMC and CNRS UMR7238ParisFrance
  2. 2.Mathématique Informatique et Génome, INRA UR1077, Jouy-en-JosasFrance

Personalised recommendations