Performance Comparison of Five Exact Graph Matching Algorithms on Biological Databases

  • Vincenzo Carletti
  • Pasquale Foggia
  • Mario Vento
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8158)


Graphs are a powerful data structure that can be applied to several problems in bioinformatics. Graph matching, in its diverse forms, is an important operation on graphs, involved when there is the need to compare two graphs or to find substructures into larger structures. Many graph matching algorithms exist, and their relative efficiency depends on the kinds of graphs they are applied to. In this paper we will consider some popular and freely available matching algorithms, and will experimentally compare them on graphs derived from bioinformatics applications, in order to help the researchers in this field to choose the right tool for the problem at hand.


Graph matching Benchmarking Graph methods in Bioinformatics 


  1. 1.
    Aittokallio, T., Schwikowski, B.: Graph-based methods for analysing networks in cell biology. Briefings in Bioinformatics 7(3), 243–255 (2006)CrossRefGoogle Scholar
  2. 2.
    Bomze, M., Budinich, M., Pardalos, M., Pelillo, M.: The maximum clique problem. Handbook of Combinatorial Optimization 4 (1999)Google Scholar
  3. 3.
    Bonnici, V., Giugno, R., Pulvirenti, A., Shasha, D., Ferro, A.: A subgraph isomorphism algorithm and its application to biochemical data. BMC Bioinformatics 14 (2013)Google Scholar
  4. 4.
    Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in Pattern Recognition. IJPRAI 18(3), 265–298 (2004)Google Scholar
  5. 5.
    Conte, D., Foggia, P., Sansone, C., Vento, M.: How and why pattern recognition and computer vision applications use graphs. In: Kandel, A., Bunke, H., Last, M. (eds.) Applied Graph Theory in Computer Vision and Pattern Recognition. SCI, vol. 52, pp. 85–135. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Cordella, L., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algorithm for matching large graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1367–1372 (2004)CrossRefGoogle Scholar
  7. 7.
    De Santo, M., Foggia, P., Percannella, G., Sansone, C., Vento, M.: An unsupervised algorithm for anchor shot detection. In: Proceedings - International Conference on Pattern Recognition, vol. 2, pp. 1238–1241 (2006)Google Scholar
  8. 8.
    Durand, P., Pasari, R., Baker, J., Tsai, C.C.: An efficient algorithm for similarity analysis of molecules. Internet Journal of Chemistry 2 (1999)Google Scholar
  9. 9.
    Foggia, P., Percannella, G., Sansone, C., Vento, M.: A graph-based algorithm for cluster detection. International Journal of Pattern Recognition and Artificial Intelligence 22, 843–860 (2008)CrossRefGoogle Scholar
  10. 10.
    Gifford, E., Johnson, M., Smith, D., Tsai, C.C.: Structure-reactivity maps as a tool for visualizing xenobiotic structure-reactivity relationships. Network Science 2, 1–33 (1996)Google Scholar
  11. 11.
  12. 12.
    Huan, J., et al.: Comparing graph representations of protein structure for mining family-specific residue-based packing motif. Journal of Computational Biology (2005)Google Scholar
  13. 13.
    Kuhl, F.S., Crippen, G.M., Friesen, D.K.: A combinatorial algorithm for calculating ligand binding. Journal of Computational Chemistry 5(1), 24–34 (1984)CrossRefGoogle Scholar
  14. 14.
    Lacroix, V., Fernandez, C., Sagot, M.: Motif search in graphs: Application to metabolic networks. Transactions on Computational Biology and Bioinformatics (December 2006)Google Scholar
  15. 15.
    Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: Simple building blocks of complex networks. Science 298(5594), 824–827 (2002)CrossRefGoogle Scholar
  16. 16.
    Raymond, J., Willett, P.: Maximum common subgraph isomorphism algorithms for the matching of chemical structures. Journal of Computer-Aided Molecular Design 16(7), 521–533 (2002)CrossRefGoogle Scholar
  17. 17.
    Solnon, C.: Lad website,
  18. 18.
    Solnon, C.: Alldifferent-based filtering for subgraph isomorphism. Artificial Intelligence 174(12-13), 850–864 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Tian, Y., McEachin, R.C., Santos, C., States, D.J., Patel, J.M.: Saga: A subgraph matching tool for biological graphs. Bioinformatics 23(2), 232–239 (2007)CrossRefGoogle Scholar
  20. 20.
    Ullman, J.R.: An algorithm for subgraph isomorphism. J. Assoc. Comput. Mach. 23, 31–42 (1976)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vincenzo Carletti
    • 1
  • Pasquale Foggia
    • 1
  • Mario Vento
    • 1
  1. 1.DIEMUniversity of SalernoItaly

Personalised recommendations