Advertisement

A Supervised Approach to 3D Structural Classification of Proteins

  • Virginio Cantoni
  • Alessio Ferone
  • Alfredo Petrosino
  • Gabriella Sanniti di Baja
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8158)

Abstract

Three dimensional protein structures determine the function of a protein within a cell. Classification of 3D structure of proteins is therefore crucial to inferring protein functional information as well as the evolution of interactions between proteins. In this paper we propose to employ a recently presented structural representation of the proteins and exploit the learning capabilities of the graph neural network model to perform the classification task.

Keywords

Concavity Tree Graph Neural Network Structural Classification of Proteins Protein Function 

References

  1. 1.
    Arcelli, C., Sanniti Di Baja, G.: Polygonal covering and concavity tree of binary digital pictures. In: Proceeding International Conference MECO, vol. 78, pp. 292–297 (1978)Google Scholar
  2. 2.
    Berman, H., Henrick, K., Nakamura, H.: Announcing the worldwide Protein Data Bank. Nature Structural Biology 10(12), 980–980 (2003)CrossRefGoogle Scholar
  3. 3.
    Bianchini, M., Maggini, M., Sarti, L., Scarselli, F.: Recursive neural networks for processing graphs with labelled edges: Theory and applications. Neural Networks - Special Issue on Neural Network and Kernel Methods for Structured Domains 18, 1040–1050 (2005)CrossRefGoogle Scholar
  4. 4.
    Bock, M.E., Garutti, C., Guerra, C.: Spin image profile: a geometric descriptor for identifying and matching protein cavities. In: Proc. of CSB, San Diego (2007)Google Scholar
  5. 5.
    Borgefors, G., Sanniti Di Baja, G.: Methods for hierarchical analysis of concavities. In: Proceedings of the Conference on Pattern Recognition (ICPR), vol. 3, pp. 171–175 (1992)Google Scholar
  6. 6.
    Borgwardt, K.M., Ong, C.S., Schönauer, S., Vishwanathan, S.V.N., Smola, A.J., Kriegel, H.-P.: Protein function prediction via graph kernels. Bioinformatics 21(suppl. 1), i47–i56 (2005)CrossRefGoogle Scholar
  7. 7.
    Cantoni, V., Ferone, A., Oliva, R., Petrosino, A.: Protein Gaussian Image (PGI): A protein structural representation based on the spatial attitude of secondary structure. New Tools and Methods for Pattern Recognition in Complex Biological Systems, Nuovo Cimento C 35(5, suppl. 1) (2012)Google Scholar
  8. 8.
    Cantoni, V., Gatti, R., Lombardi, L.: Proteins Pockets Analysis and Description. Bioinformatics, 211–216 (2010)Google Scholar
  9. 9.
    Cantoni, V., Gatti, R., Lombardi, L.: Analysis of geometrical and topological aptitude for protein-protein interaction. Nuovo Cimento della Società Italiana di Fisica. C, Geophysics and Space Physics 35 C, 81–88 (2012)Google Scholar
  10. 10.
    Coleman, R.G., Sharp, K.A.: Travel Depth, a New Shape Descriptor for Macromolecules: Application to Ligand Binding. Journal of Molecular Biology 362(3) (2006)Google Scholar
  11. 11.
    Day, R., Beck, D.A., Armen, R.S., Daggett, V.: A consensus view of fold space: combining SCOP, CATH, and the Dali Domain Dictionary. Protein Sci. 12(10), 2150–2160 (2003)CrossRefGoogle Scholar
  12. 12.
    Frasconi, P., Gori, M., Sperduti, A.: A general framework for adaptive processing of data structures. IEEE Trans. on Neural Network 9(5), 768–786 (1998)CrossRefGoogle Scholar
  13. 13.
    Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing Objects in Range Data Using Regional Point Descriptors. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3023, pp. 224–237. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Glaser, F., Morris, R.J., Najmanovich, R.J., Laskowski, R.A., Thornton, J.M.: A Method for Localizing Ligand Binding Pockets in Protein Structures. PROTEINS: Structure, Function, and Bioinformatics 62, 479–488 (2006)CrossRefGoogle Scholar
  15. 15.
    Gori, M., Maggini, M., Sarti, L.: A Recursive neural network model for processing directed acyclic graph with labeled edges. In: Procedings of the International Joint Conference on Neural Networks, vol. 2, pp. 1351–1355 (2003)Google Scholar
  16. 16.
    Holm, L., Kaariainen, S., Rosenstrom, P., Schenkel, A.: Searching protein structure databases with DaliLite. Bioinformatics 3, 24(23), 2780–2781 (2008)CrossRefGoogle Scholar
  17. 17.
    Li, H., Liu, C., Burge, L., Southerland, W.: Classification of Protein 3D Structures Using Artificial Neural Network. International Journal of Machine Learning and Computing 2(6), 791–793 (2012)CrossRefGoogle Scholar
  18. 18.
    Lee, B., Richards, F.M.: The interpretation of protein structures: Estimation of static accessibility. J. Mol. Biol. 55, 379–400 (1971)CrossRefGoogle Scholar
  19. 19.
    Laskowski, R., Luscombe, N.M., Swindells, M.B., Thornton, J.M.: Protein clefts in molecular recognition and function. Protein Sci., 2438 (1996)Google Scholar
  20. 20.
    Karklin, Y., Meraz, R.F., Holbrook, S.R.: Classification of non-coding RNA using graph representations of secondary structure. In: Pac. Symp. Biocomput., pp. 4–15 (2005)Google Scholar
  21. 21.
    Marsolo, K., Parthasarathy, S., Ding, C.: A multi-level approach to SCOP folds recognition. In: Proc. Fifth IEEE Symposium on Bioinformatics and Bioengineering, pp. 57–64. IEEE Computer Society, Washington, DC (2005)CrossRefGoogle Scholar
  22. 22.
    Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: SCOP: A structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540 (1995)Google Scholar
  23. 23.
    Orengo, C.A., Michie, A.D., Jones, S., Jones, D.T., Swindells, M.B., Thornton, J.M.: CATH–a hierarchic classification of protein domain structures. Structure 5(8), 1093–1108 (1997)CrossRefGoogle Scholar
  24. 24.
    Osada, R., Funkhouser, T., Chazelle, B., Donkin, D.: Shape Distributions. ACM Transactions on Graphics 21(4), 807–832 (2002)CrossRefGoogle Scholar
  25. 25.
    Protein Data Bank, http://www.pdb.org/
  26. 26.
    Shulman-Peleg, A., Nussinov, R., Wolfson, H.: Recognition of Functional Sites in Protein Structures. J. Mol. Biol. 339, 607–633 (2004)CrossRefGoogle Scholar
  27. 27.
    Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model. IEEE Trans. on Neural Networks 20(1), 61–80 (2009)CrossRefGoogle Scholar
  28. 28.
    Sperduti, A., Starita, A.: Supervised neural networks for the classification of structures. IEEE Trans. Neural Network 8(2), 429–459 (1997)Google Scholar
  29. 29.
    Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Virginio Cantoni
    • 1
  • Alessio Ferone
    • 2
  • Alfredo Petrosino
    • 2
  • Gabriella Sanniti di Baja
    • 3
  1. 1.Department of Electrical and Computer EngineeringUniversity of PaviaPaviaItaly
  2. 2.Department of Applied ScienceUniversity of Naples ParthenopeNapoliItaly
  3. 3.Institute of Cybernetics ”E. Caianiello” - CNRNaplesItaly

Personalised recommendations