Advertisement

Recommending Multimedia Objects in Cultural Heritage Applications

  • Ilaria Bartolini
  • Vincenzo Moscato
  • Ruggero G. Pensa
  • Antonio Penta
  • Antonio Picariello
  • Carlo Sansone
  • Maria Luisa Sapino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8158)

Abstract

Italy’s Cultural Heritage is the world’s most diverse and rich patrimony and attracts millions of visitors every year to monuments, archaeological sites and museums. The valorization of cultural heritage represents nowadays one of the most important research challenges in the Italian scenario. In this paper, we present a general multimedia recommender system able to uniformly manage heterogeneous multimedia data and to provide context-aware recommendation techniques supporting intelligent multimedia services for the users. A specific application of our system within the cultural heritage domain is proposed by means of a real case study in the mobile environment related to an outdoor scenario, together with preliminary results on user’s satisfaction.

Keywords

Cultural Heritage Recommender System Multimedia Data Touristic Guide Video Shot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Albanese, M., d’Acierno, A., Moscato, V., Persia, F., Picariello, A.: Modeling recommendation as a social choice problem. In: Proc. of ACM RecSys 2010, Barcelona, Spain, pp. 329–332. ACM (2010)Google Scholar
  2. 2.
    Albanese, M., d’Acierno, A., Moscato, V., Persia, F., Picariello, A.: A multimedia semantic recommender system for cultural heritage applications. In: Proc. of ICSC 2011, Palo Alto, CA, USA, pp. 403–410. IEEE (2011)Google Scholar
  3. 3.
    Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. Human Mental Workload 1, 139–183 (1988)CrossRefGoogle Scholar
  4. 4.
    Kabassei, K.: Personalisation systems for cultural tourism. In: Multimedia Services in Intelligent Environments, Springer, pp. 101–111. Springer (2013)Google Scholar
  5. 5.
    Bartolini, I., Ciaccia, P., Patella, M.: Query processing issues in region-based image databases. Knowl. Inf. Syst. 25(2), 389–420 (2010)CrossRefGoogle Scholar
  6. 6.
    Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing techniques in relational database systems. ACM Comput. Surv. 40(4) (2008)Google Scholar
  7. 7.
    Salton, G.: Automatic text processing: the transformation, analysis, and retrieval of information by computer. Addison-Wesley, Reading (1989)Google Scholar
  8. 8.
    Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity search in metric spaces. In: Proc. of VLDB 1997, Athens, Greece, pp. 426–435 (1997)Google Scholar
  9. 9.
    Bartolini, I., Patella, M., Romani, C.: SHIATSU: tagging and retrieving videos without worries. Multimed. Tools Appl. 63(2), 357–385 (2013)CrossRefGoogle Scholar
  10. 10.
    Bartolini, I., Ciaccia, P.: imagination: Exploiting link analysis for accurate image annotation. In: Boujemaa, N., Detyniecki, M., Nürnberger, A. (eds.) AMR 2007. LNCS, vol. 4918, pp. 32–44. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Bartolini, I., Zhang, Z., Papadias, D.: Collaborative filtering with personalized skylines. IEEE Trans. Knowl. Data Eng. 23(2), 190–203 (2011)CrossRefGoogle Scholar
  12. 12.
    Ienco, D., Robardet, C., Pensa, R.G., Meo, R.: Parameter-less co-clustering for star-structured heterogeneous data. Data Min. Knowl. Discov. 26(2), 217–254 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.): Recommender Systems Handbook. Springer (2011)Google Scholar
  14. 14.
    Dourish, P.: What we talk about when we talk about context. Personal and Ubiquitous Computing 8(1), 19–30 (2004)CrossRefGoogle Scholar
  15. 15.
    Karatzoglou, A., Amatriain, X., Baltrunas, L., Oliver, N.: Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering. In: Proc. of ACM RecSys 2010, Barcelona, Spain, pp. 79–86. ACM (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ilaria Bartolini
    • 1
  • Vincenzo Moscato
    • 2
  • Ruggero G. Pensa
    • 3
  • Antonio Penta
    • 3
  • Antonio Picariello
    • 2
  • Carlo Sansone
    • 2
  • Maria Luisa Sapino
    • 3
  1. 1.DISIUniversity of BolognaItaly
  2. 2.DIETIUniversity of Naples ”Federico II”Italy
  3. 3.University of Torino, DIItaly

Personalised recommendations