Automatic Single-Image People Segmentation and Removal for Cultural Heritage Imaging

  • Marco Manfredi
  • Costantino Grana
  • Rita Cucchiara
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8158)

Abstract

In this paper, the problem of automatic people removal from digital photographs is addressed. Removing unintended people from a scene can be very useful to focus further steps of image analysis only on the object of interest, A supervised segmentation algorithm is presented and tested in several scenarios.

Keywords

people removal segmentation cultural heritage imaging inpainting 

References

  1. 1.
    Avidan, S., Shamir, A.: Seam carving for content-aware image resizing. ACM Trans. Graph. 26(3) (July 2007), http://doi.acm.org/10.1145/1276377.1276390
  2. 2.
    Bertelli, L., Yu, T., Vu, D., Gokturk, B.: Kernelized structural SVM learning for supervised object segmentation. In: Proceedings of the 24th IEEE Conference on Computer Vision and Pattern Recognition, pp. 2153–2160 (June 2011)Google Scholar
  3. 3.
    Borenstein, E., Sharon, E., Ullman, S.: Combining top-down and bottom-up segmentation. In: Proceedings of the 17th IEEE Conference on Computer Vision and Pattern Recognition Workshops, p. 46 (June 2004)Google Scholar
  4. 4.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)CrossRefGoogle Scholar
  5. 5.
    Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: Proceedings of the 8th IEEE International Conference on Computer Vision, vol. 1, pp. 105–112 (2001)Google Scholar
  6. 6.
    Criminisi, A., Perez, P., Toyama, K.: Object removal by exemplar-based inpainting. In: Proceedings of 16th IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 721–728 (June 2003)Google Scholar
  7. 7.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the 18th IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886–893 (June 2005)Google Scholar
  8. 8.
    Enzweiler, M., Gavrila, D.: Monocular pedestrian detection: Survey and experiments. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(12), 2179–2195 (2009)CrossRefGoogle Scholar
  9. 9.
    Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part based models. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(9), 1627–1645 (2010)CrossRefGoogle Scholar
  10. 10.
    Flores, A., Belongie, S.: Removing pedestrians from google street view images. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 53–58 (June 2010)Google Scholar
  11. 11.
    Girshick, R.B., Felzenszwalb, P.F., McAllester, D.: Discriminatively Trained Deformable Part Models, Release 5, http://people.cs.uchicago.edu/~rbg/latent-release5/
  12. 12.
    Girshick, R.B., Felzenszwalb, P.F., McAllester, D.A.: Object Detection with Grammar Models. In: Neural Information Processing Systems, pp. 442–450 (2011)Google Scholar
  13. 13.
    Hare, S., Saffari, A., Torr, P.: Struck: Structured output tracking with kernels. In: Proceedings of the 13th International Conference on Computer Vision, pp. 263–270 (November 2011)Google Scholar
  14. 14.
    Lampert, C., Blaschko, M.: Structured prediction by joint kernel support estimation. Machine Learning 77, 249–269 (2009)CrossRefGoogle Scholar
  15. 15.
    Mudge, M., Ashley, M., Schroer, C.: A digital future for cultural heritage. In: Proceedings of the 21st CIPA Symposium, ISPRS Archives, vol. XXXVI-5/C53 (October 2007)Google Scholar
  16. 16.
    Nowozin, S., Gehler, P.V., Lampert, C.H.: On Parameter Learning in CRF-Based Approaches to Object Class Image Segmentation. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 98–111. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Rother, C., Kolmogorov, V., Blake, A.: “GrabCut”: interactive foreground extraction using iterated graph cuts. In: ACM SIGGRAPH 2004 Papers, SIGGRAPH 2004, pp. 309–314. ACM (2004), http://doi.acm.org/10.1145/1186562.1015720
  18. 18.
    Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured and interdependent output variables. Journal of Machine Learning Research 6, 1453–1484 (2005)MathSciNetMATHGoogle Scholar
  19. 19.
    Uchiyama, H., Deguchi, D., Takahashi, T., Ide, I., Murase, H.: Removal of moving objects from a street-view image by fusing multiple image sequences. In: Proceedings of the 20th International Conference on Pattern Recognition, pp. 3456–3459 (August 2010)Google Scholar
  20. 20.
    Vapnik, V.: Statistical learning theory. Wiley (1998)Google Scholar
  21. 21.
    Wexler, Y., Shechtman, E., Irani, M.: Space-time completion of video. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(3), 463–476 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marco Manfredi
    • 1
  • Costantino Grana
    • 1
  • Rita Cucchiara
    • 1
  1. 1.Università degli Studi di Modena e Reggio EmiliaModenaItaly

Personalised recommendations