Advertisement

Stability of Dynamic Signatures: From the Representation to the Generation Domain

  • Giuseppe Pirlo
  • Donato Impedovo
  • Rejean Plamondon
  • Christian O’Reilly
  • A. Cozzolongo
  • R. Gravinese
  • Andrea Rollo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8158)

Abstract

Stability analysis of handwritten signatures is very relevant for automatic signature verification. In this paper the analysis of stability is performed by considering the characteristics of the processes underlying signature generation. More precisely, the analysis of stability is performed by considering the Sigma-Lognormal parameters, according to the Kinematic Theory. The experimental tests, carried out using the SUSig database, demonstrate that the new technique can provide useful information both for a deep understanding of the processes of signature generation and for the improvement of the processes for automatic signature verification.

Keywords

Biometry Automatic Signature Verification Stability Analysis Sigma-Lognormal 

References

  1. 1.
    Vielhauer, C.: A Behavioural Biometrics. Public Service Review: European Union 9, 113–115 (2005)Google Scholar
  2. 2.
    Plamondon, R.: A Kinematic Theory of Rapid Human Movements: Part I: Movement Representation and generation. Biological Cybernetics 72(4), 295–307 (1995)CrossRefzbMATHGoogle Scholar
  3. 3.
    Impedovo, D., Pirlo, G., Plamondon, R.: Handwritten Signature Verification: New Advancements and Open Issues. In: XIII International Conference on Frontiers in Handwriting Recognition (ICFHR 2012), Monopoli, Bari, Italy, pp. 365–370 (September 2012)Google Scholar
  4. 4.
    Huang, K., Yan, H.: Stability and style-variation modeling for on-line signature verification. Pattern Recognition 36(10), 2253–2270 (2003)CrossRefzbMATHGoogle Scholar
  5. 5.
    Impedovo, S., Pirlo, G.: Verification of Handwritten Signatures: an Overview. In: 14th International Conference on Image Analysis and Processing, ICIAP 2007, Modena, Italy, pp. 191–196. IEEE Computer Society Press (September 2007)Google Scholar
  6. 6.
    Lei, H., Govindaraju, V.: A comparative study on the consistency of features in on-line signature verification. Pattern Recognition Letters 26, 2483–2489 (2005)CrossRefGoogle Scholar
  7. 7.
    Schomaker, L.R.B., Plamondon, R.: The Relation between Axial Pen Force and Pen Point Kinematics in Handwriting. Biological Cybernetics 63, 277–289 (1990)CrossRefGoogle Scholar
  8. 8.
    Impedovo, D., Pirlo, G.: On the Measurement of Local Stability of Handwriting - An application to Static Signature Verification. In: Biometric Measurements and Systems for Security and Medical Applications (BIOMS 2010), Taranto, Italy, pp. 41–44. IEEE Computer Society Press (September 2010)Google Scholar
  9. 9.
    Impedovo, D., Pirlo, G., Stasolla, E., Trullo, C.A.: Learning Local Correspondences for Static Signature Verification. In: 11th Int. Conf. of the Italian Association for Artificial Intelligence (AI*IA 2009), Reggio Emilia, Italy (December 2009)Google Scholar
  10. 10.
    Djioua, M., Plamondon, R.: Studying the Variability of Handwriting Patterns using the Kinematic Theory. Human Movement Science 28(5), 588–601 (2009)CrossRefGoogle Scholar
  11. 11.
    O’Reilly, C., Plamondon, R.: Development of a Sigma-Lognormal Representation for On-Line Signatures. Pattern Recognition 42, 3324–3337 (2009)CrossRefzbMATHGoogle Scholar
  12. 12.
    Plamondon, R.: Strokes against stroke- Stroke for strides. In: 3rd ICFHR, Bari, Italy (September 2012), http://www.icfhr2012.uniba.it/ICFHR2012-Invited_I.pdf
  13. 13.
    Di Lecce, V., Dimauro, G., Guerriero, A., Impedovo, S., Pirlo, G., Salzo, A., Sarcinella, L.: Selection of Reference Signatures for Automatic Signature Verification. In: 5th Int. Conf. on Document Analysis and Recognition (ICDAR-5), Bangalore, India, pp. 597–600 (1999)Google Scholar
  14. 14.
    Congedo, G., Dimauro, G., Impedovo, S., Pirlo, G.: A new methodology for the measurement of local stability in dynamical signatures. In: 4th Int. Workshop on Frontiers in Handwriting Recognition (IWFHR-4), Taipei, Taiwan, pp. 135–144 (1994)Google Scholar
  15. 15.
    Impedovo, D., Modugno, R., Pirlo, G., Stasolla, E.: Handwritten Signature Verification by Multiple Reference Sets. In: 11th Int. Conf. on Frontiers in Handwriting Recognition, Concordia University, Montreal, Canada, pp. 125–129 (August 2008)Google Scholar
  16. 16.
    Di Lecce, V., Dimauro, G., Guerriero, A., Impedovo, S., Pirlo, G., Salzo, A.: A Multi-expert System for Dynamic Signature Verification. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 320–329. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Impedovo, D., Pirlo, G.: On-line Signature Verification by Stroke-Dependent Representation Domains. In: 12th Int. Conf. Frontiers in Handwriting Recognition (ICFHR-12), Kolkata, India, pp. 623–627 (November 2010)Google Scholar
  18. 18.
    Yanikoglu, B., Kholmatov, A.: SUSIG: An online handwritten signature database, associated protocol and benchmark results. Pattern Anal. Applic. 12, 227–236 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Giuseppe Pirlo
    • 1
  • Donato Impedovo
    • 1
  • Rejean Plamondon
    • 2
  • Christian O’Reilly
    • 2
  • A. Cozzolongo
    • 1
  • R. Gravinese
    • 1
  • Andrea Rollo
    • 1
  1. 1.Dipartimento di InformaticaUniversità degli Studi di BariItaly
  2. 2.Ecole Polytecnique de MontrealCanada

Personalised recommendations