Exploiting Stability Regions for Online Signature Verification

  • Antonio Parziale
  • Salvatore G. Fuschetto
  • Angelo Marcelli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8158)


We present a method for finding the stability regions within a set of genuine signatures and for selecting the most suitable one to be used for online signature verification. The definition of stability region builds upon motor learning and adaptation in handwriting generation, while their selection exploits both their ability to model signing habits and their effectiveness in capturing distinctive features. The stability regions represent the core of a signature verification system whose performance is evaluated on a standard benchmark.


online signature verification stability region handwriting generation motor learning 


  1. 1.
    Senatore, R.: The role of Basal ganglia and Cerebellum in Motor Learning: A computational model. PhD Thesis, University of Salerno (March 2012)Google Scholar
  2. 2.
    Raibert, M.H.: Motor control and learning by state space model. AILab. MIT (1977)Google Scholar
  3. 3.
    Impedovo, D., Pirlo, G.: Automatic signature verification: the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 38(5), 609–635 (2008)CrossRefGoogle Scholar
  4. 4.
    Impedovo, D., Pirlo, G., Plamondon, R.: Handwritten Signature Verification: New Advancements and Open Issues. In: 2012 International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 367–372. IEEE (September 2012)Google Scholar
  5. 5.
    Dimauro, G., Impedovo, S., Modugno, R., Pirlo, G., Sarcinella, L.: Analysis of stability in hand-written dynamic signatures. In: Eighth International Workshop on Frontiers in Handwriting Recognition, pp. 259–263. IEEE (2002)Google Scholar
  6. 6.
    Huang, K., Yan, H.: Stability and style-variation modeling for on-line signature verification. Pattern Recognition 36(10), 2253–2270 (2003)CrossRefzbMATHGoogle Scholar
  7. 7.
    Marcelli, A., Fuschetto, S.G., Parziale, A.: Modeling Stability in On-line Signatures. In: Proceedings of IGS 2013, pp. 135–138 (June 2013)Google Scholar
  8. 8.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  9. 9.
    De Stefano, C., Marcelli, A., Santoro, A.: On-line cursive recognition by ink matching. In: Phillips, J.G., Rogers, D., Ogeil, R.P. (eds.) Proceedings of IGS 2007, pp. 23–37 (2007)Google Scholar
  10. 10.
    De Stefano, C., Garruto, M., Lapresa, L., Marcelli, A.: Using strings for on-line handwriting shape matching: A new weighted edit distance. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 1125–1132. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Yeung, D.-Y., Chang, H., Xiong, Y., George, S., Kashi, R., Matsumoto, T., Rigoll, G.: SVC2004: First international signature verification competition. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 16–22. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Kholmatov, A., Yanikoglu, B.: SUSIG: an on-line signature database, associated protocols and benchmark results. Pattern Analysis and Applications 12(3), 227–236 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Antonio Parziale
    • 1
  • Salvatore G. Fuschetto
    • 1
  • Angelo Marcelli
    • 1
  1. 1.Natural Computation Laboratory,DIEMUniversity of SalernoFiscianoItaly

Personalised recommendations