Multicamera People Tracking Using a Locus-based Probabilistic Occupancy Map

  • Tao Hu
  • Sinan Mutlu
  • Oswald Lanz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8157)


We propose a novel people detection method using a Locus-based Probabilistic Occupancy Map (LPOM). Given the calibration data and the motion edges extracted from all views, the method is able to compute the probabilistic occupancy map for the targets in the scene. We integrate the algorithm into a Bayesian-based tracker and do experiments with challenging video sequences. Experimental results demonstrate the robustness and high-precision of the tracker when tracking multiple people in the presence of clutters and occlusions.


people detection multicamera tracking probabilistic occupancy map 


  1. 1.
    Khan, S.M., Shah, M.: Tracking Multiple Occluding People by Localizing on Multiple Scene Planes. IEEE Transactions. PAMI 31(3), 505–519 (2009)CrossRefGoogle Scholar
  2. 2.
    Lanz, O., Messelodi, S.: A Sampling Algorithm for Occlusion Robust Multi Target Detection. In: Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance, September 2-4, pp. 346–351 (2009)Google Scholar
  3. 3.
    Fleuret, F., Berclaz, J., Lengagne, R., Fua, P.: Multicamera People Tracking with a Probabilistic Occupancy Map. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(2), 267–282 (2008)CrossRefGoogle Scholar
  4. 4.
    Utasi, A., Benedek, C., Lengagne, R., Fua, P.: A Bayesian Approach on People Localization in Multicamera Systems. IEEE Transactions on Circuits and Systems for Video Technology 23(1), 105–115 (2013)CrossRefGoogle Scholar
  5. 5.
    Isard, M., Blake, A.: CONDENSATION-conditional density propagation for visual tracking. International Journal of Computer Vision 29(1), 5–28 (1998)CrossRefGoogle Scholar
  6. 6.
    Yang, D.B., Gonzalez-Banos, H.H., Guibas, L.J.: Counting people in crowds with a real-time network of simple image sensors. In: Proceedings. Ninth IEEE International Conference on Computer Vision, October 13-16, vol. 1, pp. 122–129 (2003)Google Scholar
  7. 7.
    Isard, M., MacCormick, J.: BraMBLe: a Bayesian multiple-blob tracker. In: Proceedings of the Eighth IEEE International Conference on Computer Vision, ICCV 2001, vol. 2, pp. 34–41 (2001)Google Scholar
  8. 8.
    Kang, J., Cohen, I., Medioni, G.: Tracking people in crowded scenes across multiple cameras. In: Proc. 6th Asian Conf. Comput. Vision, pp. 390–395 (2004)Google Scholar
  9. 9.
    Lanz, O.: Approximate Bayesian multibody tracking. IEEE Trans. PAMI 28(9) (2006)Google Scholar
  10. 10.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Comput. Surveys 38(4), 1–45 (2006)CrossRefGoogle Scholar
  11. 11.
    Glas, D.F., Miyashita, T., Ishiguro, H., Hagita, N.: Laser-based tracking of human position and orientation using parametric shape modeling. Adv. Robot. 23, 405–428 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tao Hu
    • 1
    • 2
  • Sinan Mutlu
    • 1
    • 2
  • Oswald Lanz
    • 1
  1. 1.FBK Fondazione Bruno KesslerPovoItaly
  2. 2.ICT Doctoral SchoolUniversity of TrentoPovoItaly

Personalised recommendations