Spatial Resolution and Distance Information for Color Quantization

  • Giuliana Ramella
  • Gabriella Sanniti di Baja
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8157)


A new color quantization algorithm, CQ, is presented, which includes two phases. The first phase reduces the number of colors by reducing the spatial resolution of the input image. The second phase furthermore reduces the number of colors by performing color clustering guided by distance information. Then, color mapping completes the process. The algorithm has been tested on a large number of color images with different size and color distribution, and the performance has been compared to the performance of other algorithms in the literature.


Color Quantization Image Scaling Distance Transform Voronoi Diagram 


  1. 1.
    Brun, L., Trémeau, A.: Digital Color Imaging Handbook, Chapter 9: Color Quantization, Electrical and Applied Signal Processing, pp. 589–638. CRC Press (2002)Google Scholar
  2. 2.
    Celebi, M.E.: Improving the performance of k-means for color quantization. Image and Vision Computing 29, 260–271 (2011)CrossRefGoogle Scholar
  3. 3.
    Paeth, A.W.: Mapping RGB triples onto four bits. In: Glassner, A.S. (ed.) Graphics Gems, pp. 233–245. Academic Press, Cambridge (1990)CrossRefGoogle Scholar
  4. 4.
    Mojsilovic, A., Soljanin, E.: Color quantization and processing by Fibonacci lattices. IEEE Transactions on Image Processing 10(11), 1712–1725 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Heckbert, P.S.: Color Image Quantization for Frame Buffer Display. In: ACM SIGGRAPH 1982, vol. 16(3), pp. 297–307 (1982)Google Scholar
  6. 6.
    Gervautz, M., Purgtathofer, W.: A Simple Method for Color Quantization: Octree Quantization. Academic, San Diego (1990)Google Scholar
  7. 7.
    Wu, X.: Color quantization by dynamic programming and principal analysis. ACM Transactions on Graphics 11(4), 349–372 (1992)CrossRefGoogle Scholar
  8. 8.
    Kanjanawanishkul, K., Uyyanonvara, B.: Novel fast color reduction algorithm for time-constrained applications. Journal of Visual Communication and Image Representation 16, 311–332 (2005)CrossRefGoogle Scholar
  9. 9.
    Ozdemir, D., Akarun, L.: A fuzzy algorithm for color quantization of images. Pattern Recognition 35, 1785–1791 (2002)CrossRefGoogle Scholar
  10. 10.
    Bing, Z., Junyi, S., Qinke, P.: An adjustable algorithm for color quantization. Pattern Recognition Letters 25, 1787–1797 (2004)CrossRefGoogle Scholar
  11. 11.
    Kim, N., Kehtarnavaz, N.: DWT-based scene-adaptive color quantization. Real-Time Imaging 11, 443–453 (2005)CrossRefGoogle Scholar
  12. 12.
    Atsalakis, A., Papamarkos, N.: Color reduction and estimation of the number of dominant colors by using a self-growing and self-organized neural gas. Engineering Applications of Artificial Intelligence 19, 769–786 (2006)CrossRefGoogle Scholar
  13. 13.
    Chen, T.W., Chen, Y.L., Chien, S.Y.: Fast image segmentation based on K-means clustering with histograms in HSV color space. In: Proc. IEEE 10th Workshop on Multimedia Signal Processing, pp. 322–325 (2008)Google Scholar
  14. 14.
    Ramella, G., Sanniti di Baja, G.: A new technique for color quantization based on histogram analysis and clustering. IJPRAI (2013)Google Scholar
  15. 15.
    Rasti, J., Monadjemi, A., Vafaei, A.: Color reduction using a multi-stage Kohonen Self-Organizing Map with redundant features. Expert Systems with Applications 38, 13188–13197 (2011)CrossRefGoogle Scholar
  16. 16.
    Ramella, G., Sanniti di Baja, G.: Color quantization via spatial resolution reduction. In: Battiato, S., Braz, J. (eds.) VISAPP 2013, vol. 1, pp. 78–83. SCITEPRESS, Lisboa (2013)Google Scholar
  17. 17.
    Borgefors, G.: On digital distance transform in three dimensions. CVIU 64(3), 368–376 (1996)Google Scholar
  18. 18.
    Pratt, W.K.: Digital Image Processing. John Wiley & Sons, New York (2001)CrossRefGoogle Scholar
  19. 19.
  20. 20.
  21. 21.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Giuliana Ramella
    • 1
  • Gabriella Sanniti di Baja
    • 1
  1. 1.Istituto di Cibernetica “E. Caianiello”, CNRNapoli

Personalised recommendations