Fuzzy Analysis of Classifier Handshapes from 3D Sign Language Data

  • Kabil Jaballah
  • Mohamed Jemni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8157)


In this paper, we present a novel technique to track and recognize both classic handshapes and descriptive classifier handshapes inside 3D sign language sequences. Our approach is able to evaluate the intensity of CL-C, CL-L and the CL-G classifiers which are used to specify sizes or amounts of objects. Our method combines Minkowski similarity measures to match the shape of the hand and a fuzzy inference system (FIS) to quantify the classifier’s intensity. We implemented and tested our framework on a set of 3D sign language data. The membership functions as well as the rules of the designed FIS were optimized by 12 participants. The system generates evaluations which are very close to human perception of the iconic information conveyed by the classifier handshapes. The correlation of results generated by our system with those awarded by 12 participants is about 0.936 which can be considered as satisfactory.


3D sign language recognition virtual reality H-anim Handshapes Classifiers Fuzzy Inference system 


  1. 1.
    Jemni, M., ElGhoul, O.: A System to Make Signs Using Collaborative Approach. In: Miesenberger, K., Klaus, J., Zagler, W.L., Karshmer, A.I. (eds.) ICCHP 2008. LNCS, vol. 5105, pp. 670–677. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Bangham, J., Cox, S., Elliott, R., Glauert, J., Marshall, I., Rankov, S., Wells, M.: Virtual Signing: Capture, Animation, Storage and Transmission - An Overview of the ViSiCAST Project. In: IEE Seminar on Speech and Language Processing for Disabled and Elderly People, London (2000)Google Scholar
  3. 3.
    Papadogiorgaki, M., Grammalidis, N., Sarris, N., Strintzis, M.G.: Synthesis of Virtual Reality Animations from SWML using MPEG-4 Body Animation Parameters. In: Processing Workshop, Lisbon (2004)Google Scholar
  4. 4.
    Buttussi, F., Chittaro, L., Nadalutti, D.: H-Animator: A Visual Tool for Modeling, Reuse and Sharing of X3D Humanoid Animations. In: International Conference on 3D Web Technology, New York (2006)Google Scholar
  5. 5.
    Adamo-Villani, N., Doublestein, J., Martin, Z.: Sign Language for K-8 mathematics by 3D interactive animation. Journal of Educational Technology Systems 33(3) (2005)Google Scholar
  6. 6.
    Jaballah, K., Jemni, M.: Towards Sign language indexing and Retrieval. In: CSUN, San Diego, CA (2011)Google Scholar
  7. 7.
    Dreuw, P., Ney, H.: Towards automatic sign language annotation for the elan tool. In: Int. Conf. LREC Wkshp.: Representation and Processing of Sign Languages (2008)Google Scholar
  8. 8.
    Cuxac, C.: La langue des signes française, les voies de l’iconicité. Orphys (2000)Google Scholar
  9. 9.
    Frishberg, N.: Arbitrariness and Iconicity: Historical Change in American Sign Language. Language 51(23) (1975)Google Scholar
  10. 10.
    Holden, E., Owens, R.: Visual Sign Language Recognition. In: Workshop Theoretical Foundations of Computer Vision (2000)Google Scholar
  11. 11.
    Dorner, B.: Chasing the Colour Glove: Visual Hand Tracking. Simon Fraser Univ. (1994)Google Scholar
  12. 12.
    Stenger, B.: Template-based hand pose recognition using multiple cues. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3852, pp. 551–560. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Rezaei, A., Vafadoost, M., Rezaei, S., Daliri, A.: 3D Pose Estimation via Elliptical Fourier Descriptors for Deformable Hand Representations. In: The 2nd International Conference on Bioinformatics and Biomedical Engineering, ICBBE 2008, 16-18, pp. 1871–1875 (2008)Google Scholar
  14. 14.
    Jennings, C.: Robust finger tracking with multiple cameras. In: Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems, Corfu, Greece (1999)Google Scholar
  15. 15.
    Jaballah K., Jemni M.: Toward Automatic Sign Language Recognition from Web3D Based Scenes. In: International Conference in Computers Helping People with Special Needs, Vienna (2010) Google Scholar
  16. 16.
    Deza, E., Deza, M.: Dictionary of Distance. Elsevier (2006)Google Scholar
  17. 17.
    Albrecht, I., Haber, J., Seidel, H.-P.: Construction and Animation of Anatomically Based Human Hand Models. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 98–109 (2003)Google Scholar
  18. 18.
    Heap, T., Hogg, D.: Towards 3d hand tracking using a deformable model. In: Proceedings of the Second International Conference on Automatic Face and Gesture Recognition, pp. 140–145 (1996)Google Scholar
  19. 19.
    Bray, M., Koller, M., Schraudolph, N., Gool, L.V.: Stochastic meta-descent for tracking articulated structures. In: Conference on Computer Vision and Pattern Recognition Workshop, CVPRW 2004, p. 7 (2004)Google Scholar
  20. 20.
    Wu, Y., Huang, T.S.: Vision-based gesture recognition. In: Braffort, A., Gibet, S., Teil, D., Gherbi, R., Richardson, J. (eds.) GW 1999. LNCS (LNAI), vol. 1739, pp. 103–115. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  21. 21.
    Ross, T.J.: Fuzzy logic with engineering applications. McGraw Hill International (1997)Google Scholar
  22. 22.
    Papadogiorgaki, M., Grammalidis, N., Sarris, N., Strintzis, M.G.: Synthesis of Virtual Reality Animations from SWML using MPEG-4 Body Animation Parameters. In: Proceeding of: Workshop on the Representation and Processing of Sign Languages, 4th International Conference on Language Resources and Evaluation (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kabil Jaballah
    • 1
  • Mohamed Jemni
    • 1
  1. 1.ENSIT, LaTICE research LaboratoryUniversity of Tunis

Personalised recommendations