Real-Time 2DHoG-2DPCA Algorithm for Hand Gesture Recognition

  • Omnia S. ElSaadany
  • Moataz M. Abdelwahab
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8157)

Abstract

Hand gesture recognition is one of the most challenging topics in computer vision. In this paper, a new hand gesture recognition algorithm presenting a 2D representation of histogram of oriented gradients is proposed, where each bin represents a range of angles dealt with in a separate layer which allows using 2DPCA. This method maintains the spatial relation between pixels which enhances the recognition accuracy. In addition, it can be applied on either hand contour or image representing hand details. Experimental results were performed on the latest existing depth camera dataset. The comparison with reported methods confirms excellent properties of our proposed method and promotes it for real time applications.

Keywords

Human-Computer Interaction Hand Gesture Recognition 2DHoG 2DPCA 

References

  1. 1.
    Wu, Y., Huang, T.S.: Vision-based gesture recognition: A review. In: Braffort, A., Gibet, S., Teil, D., Gherbi, R., Richardson, J. (eds.) GW 1999. LNCS (LNAI), vol. 1739, pp. 103–115. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Mitra, S., Acharya, T.: Gesture recognition: A survey. Systems, Man, and Cybernetics, Part C: Applications and Reviews 37, 311–324 (2007)CrossRefGoogle Scholar
  3. 3.
    Dipietro, A.M., Sabatini, L., Dario, P.: A survey of glove-based systems and their applications. Systems, Man, and Cybernetics, Part C: Applications and Reviews 38, 461–482 (2008)CrossRefGoogle Scholar
  4. 4.
    Lamberti, L., Camastra, F.: Real-time hand gesture recognition using a color glove. In: Maino, G., Foresti, G.L. (eds.) ICIAP 2011, Part I. LNCS, vol. 6978, pp. 365–373. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Wang, R.Y., Popovi, J.: Real-time hand-tracking with a color glove. ACM Transactions on Graphics (TOG) - SIGGRAPH 28 (2009)Google Scholar
  6. 6.
    Shan Lu Imagawa, K., Igi, S.: Color-based hands tracking system for sign language recognition. In: Proceedings Third IEEE International Conference Automatic Face and Gesture Recognition, pp. 462–467. IEEE (1998)Google Scholar
  7. 7.
    Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from a single depth image. In: CVPR. IEEE (2011)Google Scholar
  8. 8.
    Ming-Hsuan, N., Yang, A., Tabb, M.: Extraction of 2d motion trajectories and its application to hand gesture recognition. Pattern Analysis and Machine Intelligence 24 (2002)Google Scholar
  9. 9.
    Liwicki, S., Everingham, M.: Automatic recognition of fingerspelled words in british sign language. In: 2nd IEEE Workshop on CVPR for Human Communicative Behavior Analysis (CVPR4HB 2009), pp. 50–57 (2009)Google Scholar
  10. 10.
    Ren, Z., Yuan, J., Zhang, Z.: Robust hand gesture recognition based on finger-earth movers distance with a commodity depth camera. In: Proceedings of the 19th ACM International Conference on Multimedia, MM 2011, pp. 1093–1096. ACM, New York (2011)Google Scholar
  11. 11.
    Rubner, Y., Tomasi, C., Guibas, L.J.: The earth movers distance as a metric for image retrieval. IJCV, 40–99 (2000)Google Scholar
  12. 12.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference Computer Vision and Pattern Recognition, CVPR, vol. 1, pp. 886–893. IEEE (2005)Google Scholar
  13. 13.
    Jian Yang, A.F., Zhang, D., Frangi, Y.J.Y.: Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 26 (2004)Google Scholar
  14. 14.
    Birk, H., Moeslund, T.B., Madsen, C.B.: Real-time recognition of hand alphabet gestures using principal component analysis. In: 10th Scandinavian Conference on Image Analysis (1997)Google Scholar
  15. 15.
    Abdelwahab, M.M., Yousry, I., Mikhael, W.: A novel algorithm for simultaneous face detection and recognition. In: Circuits and Systems (MWSCAS), pp. 670–673. IEEE (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Omnia S. ElSaadany
    • 1
  • Moataz M. Abdelwahab
    • 1
  1. 1.Nile UniversityEgypt

Personalised recommendations