Rough Set Based Homogeneous Unsharp Masking for Bias Field Correction in MRI

  • Abhirup Banerjee
  • Pradipta Maji
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8157)


A major issue in magnetic resonance (MR) image analysis is to remove the intensity inhomogeneity artifact present in MR images, which generally affects the performance of an automatic image analysis technique. In this context, the paper presents a novel approach for bias field correction in MR images by incorporating the merits of rough sets in estimating intensity inhomogeneity artifacts. Here, the concept of lower approximation and boundary region of rough sets deals with vagueness and incompleteness in filter structure definition and enables the algorithm to estimate optimum or near optimum bias field. A theoretical analysis is presented to justify the use of rough sets for bias field estimation. The performance of the proposed approach, along with a comparison with other bias field correction algorithms, is demonstrated on a set of MR images for different bias fields and noise levels.


Magnetic resonance imaging intensity inhomogeneity bias field rough sets 


  1. 1.
    Suetens, P.: Fundamentals of Medical Imaging. Cambridge University Press (2002)Google Scholar
  2. 2.
    Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A Nonparametric Method for Automatic Correction of Intensity Nonuniformity in MRI Data. IEEE Transactions on Medical Imaging 17(1), 87–97 (1998)CrossRefGoogle Scholar
  3. 3.
    Wells III, W.M., Grimson, W.E.L., Kikins, R., Jolezs, F.A.: Adaptive Segmentation of MRI Data. IEEE Transactions on Medical Imaging 15(8), 429–442 (1996)CrossRefGoogle Scholar
  4. 4.
    Guillemaud, R., Brady, M.: Estimating the Bias Field of MR Images. IEEE Transactions on Medical Imaging 16(3), 238–251 (1997)CrossRefGoogle Scholar
  5. 5.
    Pham, D.L., Prince, J.L.: Adaptive Fuzzy Segmentation of Magnetic Resonance Images. IEEE Transactions on Medical Imaging 18(9), 737–752 (1999)CrossRefGoogle Scholar
  6. 6.
    Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriarty, T.: A Modified Fuzzy C-Means Algorithm for Bias Field Estimation and Segmentation of MRI Data. IEEE Transactions on Medical Imaging 21(3), 193–199 (2002)CrossRefGoogle Scholar
  7. 7.
    Ashburner, J., Friston, K.J.: Unified Segmentation. NeuroImage 26(3), 839–851 (2005)CrossRefGoogle Scholar
  8. 8.
    Axel, L., Costantini, J., Listerud, J.: Intensity Correction in Surface-Coil MR Imaging. American Journal of Roentgenology 148, 418–420 (1987)CrossRefGoogle Scholar
  9. 9.
    Zhou, L.Q., Zhu, Y.M., Bergot, C., Laval-Jeantet, A.M., Bousson, V., Laredo, J.D., Laval-Jeantet, M.: A Method of Radio-Frequency Inhomogeneity Correction for Brain Tissue Segmentation in MRI. Computerized Medical Imaging and Graphics 25(5), 379–389 (2001)CrossRefGoogle Scholar
  10. 10.
    Narayana, P.A., Borthakur, A.: Effect of Radio Frequency Inhomogeneity Correction on the Reproducibility of Intra-Cranial Volumes Using MR Image Data. Magnetic Resonance in Medicine 33, 396–400 (1994)CrossRefGoogle Scholar
  11. 11.
    Bedell, B.J., Narayana, P.A., Wolinsky, J.S.: A Dual Approach for Minimizing False Lesion Classifications on Magnetic-Resonance Images. Magnetic Resonance in Medicine 37(1), 94–102 (1997)CrossRefGoogle Scholar
  12. 12.
    Brinkmann, B.H., Manduca, A., Robb, R.A.: Optimized Homomorphic Unsharp Masking for MR Grayscale Inhomogeneity Correction. IEEE Transactions on Medical Imaging 17(2), 161–171 (1998)CrossRefGoogle Scholar
  13. 13.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic, Dordrecht (1991)CrossRefzbMATHGoogle Scholar
  14. 14.
    Banerjee, A., Maji, P.: Contraharmonic Mean Based Bias Field Correction in MR Images. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013, Part I. LNCS, vol. 8047, pp. 523–530. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Abhirup Banerjee
    • 1
  • Pradipta Maji
    • 1
  1. 1.Machine Intelligence UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations