Advertisement

Integral Spiral Image for Fast Hexagonal Image Processing

  • Sonya Coleman
  • Bryan Scotney
  • Bryan Gardiner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8157)

Abstract

A common requirement for image processing tasks is to achieve real-time performance. One approach towards achieving this for tradition rectangular pixel-based images is to use an integral image that enables feature extraction at multiple scales in a fast and efficient manner. Alternative research has introduced the concept of hexagonal pixel-based images that closely mimic the human visual system: a real-time visual system. To enhance real time capability, we present a novel integral image for hexagonal pixel based images and associated multi-scale operator implementation that significantly accelerates the feature detection process. We demonstrate that the use of integral images enables significantly faster computation than the use of conventional spiral convolution or the use of neighbourhood address look-up tables.

Keywords

Coarse Scale Integral Image Gradient Magnitude Image Pyramid Image Processing Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bay, H., Tuytelaars, T., Van Gool, L.: Surf: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Bradley, D., Roth, G.: Adaptive thresholding using the integral image. J. Graphics, GPU, & Game Tools 12(2), 13–21 (2007)CrossRefGoogle Scholar
  3. 3.
    Grabner, M., Grabner, H., Bischof, H.: Fast Approximated SIFT. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3851, pp. 918–927. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Lindeberg, T.: Feature Detection with Automatic Scale Selection. International Journal of Computer Vision 30, 79–116 (1998)CrossRefGoogle Scholar
  5. 5.
    Middleton, L., Sivaswamy, J.: Hexagonal Image Processing; A Practical Approach. Springer (2005)Google Scholar
  6. 6.
    Roka, A.: Edge Detection Model Based on Involuntary Eye Movements of the Eye-Retina System. Acta Polytechnica Hungarica 4(1), 31–46 (2007)Google Scholar
  7. 7.
    Scotney, B.W., Coleman, S.A., Gardiner, B.: Biologically Motivated Feature Extraction Using the Spiral Architecture. In: Proc. IEEE ICIP, pp. 221–224 (2011)Google Scholar
  8. 8.
    Sheridan, P.: Spiral Architecture for Machine Vision. Ph.D. Thesis, University of Technology, Sydney(1996) Google Scholar
  9. 9.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: CVPR, vol. 1, pp. 511–518 (2001)Google Scholar
  10. 10.
    Wang, J.: Coarse-to-Fine Vision Based Localization by Indexing Scale-Invariant Fea-tures. IEEE Trans. Systems, Man, and Cybernetics, Part B 36(2), 413–420 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sonya Coleman
    • 1
  • Bryan Scotney
    • 2
  • Bryan Gardiner
    • 1
  1. 1.School of Computing and Intelligent SystemsUniversity of UlsterMageeNorthern Ireland
  2. 2.School of Computing and Information EngineeringUniversity of UlsterColeraineNorthern Ireland

Personalised recommendations