Advertisement

Texture Classification Based on Co-occurrence Matrix and Neuro-Morphological Approach

  • Mohammed Talibi Alaoui
  • Abderrahmane Sbihi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8157)

Abstract

This article proposes a hybrid approach for texture-based image classification using the gray-level co-occurrence matrices (GLCM), self-organizing map (SOM) methods and mathematical morphology in an unsupervised context. The GLCM is a matrix of how often different combinations of pixel brightness values (grey levels) occur in an image. The GLCM matrices extracted from an image are processed to create the training data set for a SOM neural network. The SOM model organizes and extracts prototypes from various features obtained from the GLCM matrices. These prototypes are represented by the underlying probability density function (pdf). Under the assumption that each modal region of the underlying pdf corresponds to a one homogenous region in the texture image, the second part of the approach consists in partitioning the self-organizing map into connected modal regions by making concepts of morphological watershed transformation suitable for their detection. The classification process is then based on the so detected modal regions. We compare this approach to other texture feature extraction using fractal dimension.

Keywords

Image Processing Texture Clustering Co-occurrence Matrix Self-Organizing Map Watershed Transformation 

References

  1. 1.
    Li, S., Kwok, 1.T., Zhu, H., Wang, Y.: Texture classification using the support vector machines. Pattern Recognition 36(12), 2883–2893 (2003)CrossRefzbMATHGoogle Scholar
  2. 2.
    Barcelos, C.A.Z., Ferreira, M.J.R., Rodrigues, M.L.: Texture image retrieval: A feature-based correspondence method in fourier spectrum. In: Third International Conference on Advances in Pattern Recognition, pp. 424–433 (2005)Google Scholar
  3. 3.
    Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using gabor filters. Pattern Recognition 24(12), 1167–1186 (1991)CrossRefGoogle Scholar
  4. 4.
    Kautz, B.S., Durand, F.: Interactive editing and modeling of bidirectional texture functions. ACM Transactions on Graphics 26(3), 53 (2007)CrossRefGoogle Scholar
  5. 5.
    Zhao, G., Pietikainen, M.: Local binary pattern descriptors for dynamic texture recognition. In: ICPR 2006: Proceedings of the 18th International Conference on Pattern Recognition, pp. 211–214 (2006)Google Scholar
  6. 6.
    Charalampidis, D., Kasparis, T.: Wavelet-based rotational invariant roughness features for texture classification and segmentation. IEEE Trans. Image Process. 11, 825–837 (2002)CrossRefGoogle Scholar
  7. 7.
    Varma, M., Garg, R.: Locally invariant fractal features for statistical texture classification. In: International Conference on Computer Vision, pp. 1–8 (2007)Google Scholar
  8. 8.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Transactions on In Systems, Man and Cybernetics 3(6) (1973)Google Scholar
  9. 9.
    Khotanzad, A., Hong, Y.H.: Invariant image recognition by zernike moments. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(5), 489–497 (1990)CrossRefGoogle Scholar
  10. 10.
    Chaudhuri, B.B., Sarkar, N.: Texture Segmentation Using Fractal Dimension. IEEE Transactions on Pattern Recognition and Machine Intelligence 17(1) (1995)Google Scholar
  11. 11.
    Talibi Alaoui, M., Sbihi, A.: Fractal Features Classification for Texture Image Using Neural Network and Mathematical Morphology. In: Proceeding of World Congress on Engineering, London, UK, Vol. I, pp. 286–294 (2012)Google Scholar
  12. 12.
    Kohonen, T.: Self-Organisation and Associative Memory, 3rd edn. Springer, New York (2001)Google Scholar
  13. 13.
    Asselin de Beauville, J.P.: l’estimation des modes d’une densité de probabilité multidimensionnelle. Revue statistique et Analyse des Données 8(7), 16–40 (1983)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Beucher, S.: Extrema of Gray Tone Fonctions and Mathematical Morphology. Rapport du C.G.M.M., Ecole des Mines, Fontainebleau, n°793 (1983)Google Scholar
  15. 15.
    Beucher, S., Lantuejoul, C.: Use of Watersheds in Contour Detection. In: Int. Workshop on Image Processing, CETT/IRISA, Rennes (1979)Google Scholar
  16. 16.
    Beucher, S.: Segmentation Tools in Mathematical Morphology. In: Image Algebra and Morphological Image Processing, SPIE, vol. 1350, pp. 70–84 (1990)Google Scholar
  17. 17.
    Rouquet, C., Chausse, F., Chapuis, R., Bonton, P.: Segmentation non supervisée d’images de scènes routières, Une approche multi-critère. TS. Traitement du Signal 13(3), 196–208 (1996)Google Scholar
  18. 18.
    Parzen, E.: On Estimation of a probability density function and mode. Ann. Math. Stat. 33, 1065–1076 (1962)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Sbihi, A., Postaire, J.G.: Mode Extraction by Multivalue Morphology for Cluster Analysis. In: Gaul, W., Pfeifer, D. (eds.) From DATA to Knowledge: Theoretical and Practical aspects of Classification, pp. 212–221. Springer, Berlin (1995)Google Scholar
  20. 20.
  21. 21.
    MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, PBSMSP 1967, pp. 281–297. University of California Press (1967)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mohammed Talibi Alaoui
    • 1
  • Abderrahmane Sbihi
    • 2
  1. 1.LAboratoire de Recherche en Informatique, LARI, FSOUniversité Mohamed IOujdaMorocco
  2. 2.Laboratoire LTI, ENSAUniversité Abdelmalek EssaadiTangerMorocco

Personalised recommendations