Advertisement

Layout Estimation of Highly Cluttered Indoor Scenes Using Geometric and Semantic Cues

  • Yu-Wei Chao
  • Wongun Choi
  • Caroline Pantofaru
  • Silvio Savarese
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8157)

Abstract

Recovering the spatial layout of cluttered indoor scenes is a challenging problem. Current methods generate layout hypotheses from vanishing point estimates produced using 2D image features. This method fails in highly cluttered scenes in which most of the image features come from clutter instead of the room’s geometric structure. In this paper, we propose to use human detections as cues to more accurately estimate the vanishing points. Our method is built on top of the fact that people are often the focus of indoor scenes, and that the scene and the people within the scene should have consistent geometric configurations in 3D space. We contribute a new data set of highly cluttered indoor scenes containing people, on which we provide baselines and evaluate our method. This evaluation shows that our approach improves 3D interpretation of scenes.

Keywords

scene understanding vanishing point estimation layout 

References

  1. 1.
    Bao, S.Y., Sun, M., Savarese, S.: Toward coherent object detection and scene layout understanding. In: CVPR (2010)Google Scholar
  2. 2.
    Bourdev, L., Maji, S., Brox, T., Malik, J.: Detecting people using mutually consistent poselet activations. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 168–181. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Bourdev, L., Malik, J.: Poselets: Body part detectors trained using 3d human pose annotations. In: ICCV (2009)Google Scholar
  4. 4.
    Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (2011)Google Scholar
  5. 5.
    Choi, W., Chao, Y.W., Pantofaru, C., Savarese, S.: Understanding indoor scenes using 3d geometric phrases. In: CVPR (2013)Google Scholar
  6. 6.
    Felzenszwalb, P.F., Girshick, R.B., McAllester, D.: Discriminatively trained deformable part models., http://people.cs.uchicago.edu/pff/latent-release4/
  7. 7.
    Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part based models. TPAMI (2010)Google Scholar
  8. 8.
    Fouhey, D.F., Delaitre, V., Gupta, A., Efros, A.A., Laptev, I., Sivic, J.: People watching: Human actions as a cue for single-view geometry. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 732–745. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2004) ISBN: 0521540518Google Scholar
  10. 10.
    Hedau, V., Hoiem, D., Forsyth, D.: Recovering the spatial layout of cluttered rooms. In: ICCV (2009)Google Scholar
  11. 11.
    Hedau, V., Hoiem, D., Forsyth, D.: Recovering free space of indoor scenes from a single image. In: CVPR (2012)Google Scholar
  12. 12.
    Lee, D.C., Gupta, A., Hebert, M., Kanade, T.: Estimating spatial layout of rooms using volumetric reasoning about objects and surfaces. In: NIPS (2010)Google Scholar
  13. 13.
    Lee, D.C., Hebert, M., Kanade, T.: Geometric reasoning for single image structure recovery. In: CVPR (2009)Google Scholar
  14. 14.
    Rother, C.: A new approach for vanishing point detection in architectural environments. IVC (2002)Google Scholar
  15. 15.
    Schwing, A.G., Hazan, T., Pollefeys, M., Urtasun, R.: Efficient structured prediction for 3d indoor scene understanding. In: CVPR (2012)Google Scholar
  16. 16.
    Wang, H., Gould, S., Koller, D.: Discriminative learning with latent variables for cluttered indoor scene understandingy. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 497–510. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yu-Wei Chao
    • 1
  • Wongun Choi
    • 1
  • Caroline Pantofaru
    • 2
  • Silvio Savarese
    • 1
  1. 1.Department of Electrical Engineering and Computer ScienceUniversity of MichiganAnn ArborUSA
  2. 2.Willow Garage, Inc.Menlo ParkUSA

Personalised recommendations