Precise 3D Angle Measurements in CT Wrist Images

  • Johan Nysjö
  • Albert Christersson
  • Ida-Maria Sintorn
  • Ingela Nyström
  • Sune Larsson
  • Filip Malmberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8157)

Abstract

The clinically established method to assess the displacement of a distal radius fracture is to manually measure two reference angles, the dorsal angle and the radial angle, in consecutive 2D X-ray images of the wrist. This approach has the disadvantage of being sensitive to operator errors since the measurements are performed on 2D projections of a 3D structure. In this paper, we present a semi-automatic system for measuring relative changes in the dorsal angle in 3D computed tomography (CT) images of fractured wrists. We evaluate the proposed 3D measurement method on 28 post-operative CT images of fractured wrists and compare it with the radiographic 2D measurement method used in clinical practice. The results show that our proposed 3D measurement method has a high intra- and inter-operator precision and is more precise and robust than the conventional 2D measurement method.

Keywords

Wrist fractures CT angle measurements bone segmentation interactive mesh segmentation surface registration 

References

  1. 1.
    Bell, W.N., Olson, L.N., Schroder, J.: PyAMG: Algebraic Multigrid Solvers in Python (2008), http://www.pyamg.org (version 1.1)
  2. 2.
    Besl, P.J., McKay, N.D.: A Method for Registration of 3-D Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)CrossRefGoogle Scholar
  3. 3.
    Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)CrossRefGoogle Scholar
  4. 4.
    Friberg, S., Lundström, B.: Radiographic measurements of the radio-carpal joint in normal adults. Acta Radiologica Diagnosis 17(2), 249–256 (1976)Google Scholar
  5. 5.
    Johnson, P., Szabo, R.: Angle measurements of the distal radius: a cadaver study. Skeletal Radiology 22, 243–246 (1993)Google Scholar
  6. 6.
    Kobayashi, M., Berger, R.A., Nagy, L., Linscheid, R.L., Uchiyama, S., Ritt, M., An, K.N.: Normal kinematics of carpal bones: A three-dimensional analysis of carpal bone motion relative to the radius. Journal of Biomechanics 30(8), 787–793 (1997)CrossRefGoogle Scholar
  7. 7.
    Lai, Y.K., Hu, S.M., Martin, R.R., Rosin, P.L.: Rapid and Effective Segmentation of 3D Models Using Random Walks. Computer Aided Geometric Design 26(6), 665–679 (2009)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. SIGGRAPH Computer Graphics 21(4), 163–169 (1987)CrossRefGoogle Scholar
  9. 9.
    Nysjö, J., Christersson, A., Malmberg, F., Sintorn, I.M., Nyström, I.: Towards User-Guided Quantitative Evaluation of Wrist Fractures in CT Images. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 204–211. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Johan Nysjö
    • 1
    • 2
  • Albert Christersson
    • 3
  • Ida-Maria Sintorn
    • 1
    • 2
  • Ingela Nyström
    • 1
    • 2
  • Sune Larsson
    • 3
  • Filip Malmberg
    • 1
    • 2
  1. 1.Centre for Image AnalysisUppsala UniversitySweden
  2. 2.SLUSweden
  3. 3.Dept. of OrthopedicsUppsala University HospitalSweden

Personalised recommendations