Discrete Morse versus Watershed Decompositions of Tessellated Manifolds

  • Leila De Floriani
  • Federico Iuricich
  • Paola Magillo
  • Patricio Simari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8157)


With improvements in sensor technology and simulation methods, datasets are growing in size, calling for the investigation of efficient and scalable tools for their analysis. Topological methods, able to extract essential features from data, are a prime candidate for the development of such tools. Here, we examine an approach based on discrete Morse theory and compare it to the well-known watershed approach as a means of obtaining Morse decompositions of tessellated manifolds endowed with scalar fields, such as triangulated terrains or tetrahedralized volume data. We examine the theoretical aspects as well as present empirical results based on synthetic and real-world data describing terrains and 3D scalar fields. We will show that the approach based on discrete Morse theory generates segmentations comparable to the watershed approach while being theoretically sound, more efficient with regard to time and space complexity, easily parallelizable, and allowing for the computation of all descending and ascending i-manifolds and the topological structure of the two Morse complexes.


Discrete Morse theory Morse decompositions watershed segmentation 


  1. 1.
    Biasotti, S., De Floriani, L., Falcidieno, B., Frosini, P., Giorgi, D., Landi, C., Papaleo, L., Spagnuolo, M.: Describing shapes by geometrical-topological properties of real functions. ACM Comput. Surv. 40(4), 12:1–12:87 (2008)Google Scholar
  2. 2.
    Chen, X., Golovinskiy, A., Funkhouser, T.: A benchmark for 3D mesh segmentation. In: Proceedings of ACM SIGGRAPH, p. 73. ACM (2009)Google Scholar
  3. 3.
    Čomić, L., De Floriani, L., Iuricich, F.: Dimension-independent multi-resolution morse complexes. Computers and Graphics 36(5), 541–547 (2012)CrossRefGoogle Scholar
  4. 4.
    Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Morse-Smale Complexes for Piecewise Linear 3-Manifolds. In: Proceedings 19th ACM Symposium on Computational Geometry, pp. 361–370 (2003)Google Scholar
  5. 5.
    Forman, R.: Morse theory for cell complexes. Advances in Mathematics 134, 90–145 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Günther, D., Reininghaus, J., Wagner, H., Hotz, I.: Efficient computation of 3D Morse-Smale complexes and persistent homology using discrete Morse theory. The Visual Computer 28(10), 959–969 (2012)CrossRefGoogle Scholar
  7. 7.
    Gyulassy, A., Bremer, P.T., Hamann, B., Pascucci, V.: A practical approach to Morse-Smale complex computation: Scalability and generality. IEEE Transactions on Visualization and Computer Graphics 14(6), 1619–1626 (2008)CrossRefGoogle Scholar
  8. 8.
    Huang, Q., Dom, B.: Quantitative methods of evaluating image segmentation. In: Proceedings of the International Conference on Image Processing, vol. 3, pp. 53–56 (1995)Google Scholar
  9. 9.
    King, H.C., Knudson, K., Neza, M.: Generating discrete Morse functions from point data. Experimental Mathematics 14(4), 435–444 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Lewiner, T.: Critical sets in discrete Morse theories: Relating Forman and piecewise-linear approaches. Computer Aided Geometric Design 30(6), 609–621 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Meyer, F.: Topographic distance and watershed lines. Signal Process. 38(1), 113–125 (1994)CrossRefzbMATHGoogle Scholar
  12. 12.
    Milnor, J.: Morse Theory. Princeton University Press, New Jersey (1963)zbMATHGoogle Scholar
  13. 13.
    Rand, W.M.: Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 66(336), 846–850 (1971)CrossRefGoogle Scholar
  14. 14.
    Robins, V., Wood, P., Sheppard, A.: Theory and algorithms for constructing discrete Morse complexes from grayscale digital images. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(8), 1646–1658 (2011)CrossRefGoogle Scholar
  15. 15.
    Roerdink, J.B.T.M., Meijster, A.: The watershed transform: definitions, algorithms and parallelization strategies. Fundam. Inf. 41(1-2), 187–228 (2000)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Shivashankar, N., Natarajan, V.: Parallel computation of 3D Morse-Smale complexes. Computer Graphics Forum 31(3), 965–974 (2012)CrossRefGoogle Scholar
  17. 17.
    Shivashankar, N., Senthilnathan, M., Natarajan, V.: Parallel computation of 2D Morse-Smale complexes. IEEE Transactions on Visualization and Computer Graphics 18(10), 1757–1770 (2012)CrossRefGoogle Scholar
  18. 18.
    Soille, P.: Morphological Image Analysis: Principles and Applications, 2nd edn. Springer-Verlag New York, Inc., Secaucus (2003)Google Scholar
  19. 19.
    Vincent, L., Soille, P.: Watershed in digital spaces: An efficient algorithm based on immersion simulation. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(6), 583–598 (1991)CrossRefGoogle Scholar
  20. 20.
    Weiss, K., De Floriani, L.: Diamond hierarchies of arbitrary dimension. Computer Graphics Forum (Proceedings SGP 2009) 28(5), 1289–1300 (2009)CrossRefGoogle Scholar
  21. 21.
    Weiss, K., Iuricich, F., Fellegara, R., De Floriani, L.: A primal/dual representation for discrete morse complexes on tetrahedral meshes. In: Proceedings Eurovis (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Leila De Floriani
    • 1
    • 2
  • Federico Iuricich
    • 1
    • 2
  • Paola Magillo
    • 1
    • 2
  • Patricio Simari
    • 1
    • 2
  1. 1.DIBRISUniversity of GenovaGenovaItaly
  2. 2.Department of Computer ScienceUniversity of MarylandCollege ParkUnited States

Personalised recommendations