Skip to main content

Pedestrian Detection in Poor Visibility Conditions: Would SWIR Help?

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 8157)


The 2WIDE_SENSE (WIDE spectral band & WIDE dynamics multifunctional imaging SENSor Enabling safer car transportation) EU funded project is aimed at the development of a low-cost camera sensor for Advanced Driver Assistance Systems (ADAS) applications able to acquire the full visible to Short Wave InfraRed (SWIR) spectrum from 400 to 1700 nm. This paper presents the first results obtained by investigating the SWIR contribution to pedestrian detection in difficult visibility conditions as haze and fog employing the wide-bandwidth camera developed within the project.


  • SWIR
  • pedestrian detection
  • classification
  • large bandwidth cameras
  • haze
  • fog


  1. Bertozzi, M., Fedriga, R.I., Miron, A., Reverchon, J.-L.: SWIR vs. Visible Imagers for Pedestrian Detection in Reduced Visibility Conditions. In: Procs. IEEE Intl. Conf. on Intelligent Transportation Systems, The Hague, Nederlands (submitted)

    Google Scholar 

  2. Binelli, E., Broggi, A., Fascioli, A., Ghidoni, S., Grisleri, P., Graf, T., Meinecke, M.-M.: A Modular Tracking System for Far Infrared Pedestrian Recognition. In: Procs. IEEE Intelligent Vehicles Symposium 2005, Las Vegas, USA, pp. 758–763 (June 2005)

    Google Scholar 

  3. Brooks, A.L.: Improved Multispectral Skin Detection and Its Application to Search Space Reduction for Dismount Detection Based on Histograms of Oriented Gradients. Master’s thesis, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio, USA (October 2012)

    Google Scholar 

  4. Chang, H., Koschan, A., Abidi, M.: Multispectral visible and infrared imaging for face. In: Procs. IEEE Computer Vision and Pattern Recognition Workshops, pp. 1–6. IEEE Computer Society, Anchorage (2008)

    Google Scholar 

  5. Everingham, M., van Gool, L., Williams, C., Winn, J., Zisserman, A.: The Pascal visual object classes,

  6. Felzenszwalb, P.F., Girshick, R.B., McAllester, D.: Cascade object detection with deformable part models. In: Procs. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 2241–2248 (2010)

    Google Scholar 

  7. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. on Pattern Analysis and Machine Intelligence 32(9), 1627–1645 (2010)

    CrossRef  Google Scholar 

  8. Hansen, M.P., Malchow, D.S.: Overview of SWIR detectors, cameras, and applications. In: Procs. SPIE, vol. 6939, Thermosense XXX (March 2008)

    Google Scholar 

  9. Kilgore, G.A., Whillock, P.R.: Skin Detection Sensor, United States Patent Office, Publication nr. US2007/0106160A1, Application n. 11/264,654, Issued patent US7446316, 2008-11-04 (November 2008)

    Google Scholar 

  10. Malchow, D.: NIR Trends: Penetrating The Haze Of Scattered Light. In: UTC Aerospace Systems (Sensors Unlimited Products) Goodrich Corporation (October 2008)

    Google Scholar 

  11. Nunez, A.S., Mendenhall, M.J.: Detection of Human Skin in Near Infrared Hyperspectral Imagery. In: Procs. IEEE Geoscience and Remote Sensing Symposium, pp. 621–624. IEEE Computer Society (July 2008)

    Google Scholar 

  12. Valldorf, J., Gessner, W. (eds.): Advanced Microsystems for Automotive Applications 2005. Springer, Berlin (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bertozzi, M., Fedriga, R.I., Miron, A., Reverchon, JL. (2013). Pedestrian Detection in Poor Visibility Conditions: Would SWIR Help?. In: Petrosino, A. (eds) Image Analysis and Processing – ICIAP 2013. ICIAP 2013. Lecture Notes in Computer Science, vol 8157. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41183-0

  • Online ISBN: 978-3-642-41184-7

  • eBook Packages: Computer ScienceComputer Science (R0)