Robust Coarse-to-Fine Sparse Representation for Face Recognition

  • Yunlian Sun
  • Massimo Tistarelli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8157)


Recently Sparse Representation-based classification (SRC) has been successfully applied to pattern classification. In this paper, we present a robust Coarse-to-Fine Sparse Representation (CFSR) for face recognition. In the coarse coding phase, the test sample is represented as a linear combination of all the training samples. In the last phase, a number of “nearest neighbors” is determined to represent the test sample to perform classification. CFSR produces the sparseness through the coarse phase, and exploits the local data structure to perform classification in the fine phase. Moreover, this method can make a better classification decision by determining an individual dictionary for each test sample. Extensive experiments on benchmark face databases show that our method has competitive performance in face recognition compared with other state-of-the-art methods.


coarse-to-fine sparse representation face recognition 


  1. 1.
    Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: a literature survey. ACM Computing Surveys 35, 399–458 (2003)CrossRefGoogle Scholar
  2. 2.
    Yang, J., Zhang, D., Song, F.X., Yang, J.Y.: Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Transactions on PAMI 26, 131–137 (2004)CrossRefGoogle Scholar
  3. 3.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces versus fisherfaces: Recognition using class specific linear projection. IEEE Transactions on PAMI 19, 711–720 (1997)CrossRefGoogle Scholar
  4. 4.
    Liu, Z.Y., Chiu, K.C., Xu, L.: Improved system for object detection and star/galaxy classification via local subspace analysis. Neural Networks 16, 437–451 (2003)CrossRefGoogle Scholar
  5. 5.
    Vural, V., Fung, G., Krishnapuram, B., Dy, J.G., Rao, B.: Using local dependencies within batches to improve large margin classifiers. J. Mach. Learn. Res. 10, 183–206 (2009)zbMATHGoogle Scholar
  6. 6.
    Fan, Z.Z., Xu, Y., Zhang, D.: Local linear discriminant analysis framework using sample neighbors. IEEE Transactions on NN 22, 1119–1132 (2011)CrossRefGoogle Scholar
  7. 7.
    Grosso, E., Tistarelli, M.: Active/dynamic stereo vision. IEEE Transactions on PAMI 17, 868–879 (1995)CrossRefGoogle Scholar
  8. 8.
    Lindeberg, T.: Scale-space theory in computer vision. Kluwer Academic Publishers (1994)Google Scholar
  9. 9.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–100 (2004)CrossRefGoogle Scholar
  10. 10.
    Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Transactions on PAMI 31, 210–227 (2009)CrossRefGoogle Scholar
  11. 11.
    Zhang, L., Yang, M., Feng, X.C.: Sparse representation or collaborative representation: which helps face recognition? In: Proceedings ICCV 2011, pp. 471–478 (2011)Google Scholar
  12. 12.
    Xu, Y., Zhang, D., Yang, J., Yang, J.Y.: A two-phase test sample sparse representation method for use with face recognition. IEEE Transactions on T-CSVT 21, 1255–1262 (2011)Google Scholar
  13. 13.
    Sugiyama, M.: Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. J. Mach. Learn. Res. 8, 1027–1061 (2007)zbMATHGoogle Scholar
  14. 14.
    Lee, K., Ho, J., Kriegman, D.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Transactions on PAMI 27, 684–698 (2005)CrossRefGoogle Scholar
  15. 15.
    Martinez, A., Benavente, R.: The AR face database. CVC Tech. Report 24 (1998)Google Scholar
  16. 16.
  17. 17.
    Ho, J., Yang, M., Lim, J., Lee, K., Kriegman, D.: Clustering appearances of objects under varying illumination conditions. In: Proceedings 2003 IEEE Computer Society Conference on CVPR, pp. 11–18 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yunlian Sun
    • 1
  • Massimo Tistarelli
    • 1
  1. 1.Department of Sciences and Information TechnologyUniveristy of SassariSassariItaly

Personalised recommendations