Using Dominant Sets for k-NN Prototype Selection

  • Sebastiano Vascon
  • Marco Cristani
  • Marcello Pelillo
  • Vittorio Murino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8157)


k-Nearest Neighbors is surely one of the most important and widely adopted non-parametric classification methods in pattern recognition. It has evolved in several aspects in the last 50 years, and one of the most known variants consists in the usage of prototypes: a prototype distills a group of similar training points, diminishing drastically the number of comparisons needed for the classification; actually, prototypes are employed in the case the cardinality of the training data is high. In this paper, by using the dominant set clustering framework, we propose four novel strategies for the prototype generation, allowing to produce representative prototypes that mirror the underlying class structure in an expressive and effective way. Our strategy boosts the k-NN classification performance; considering heterogeneous metrics and analyzing 15 diverse datasets, we are among the best 6 prototype-based k-NN approaches, with a computational cost which is strongly inferior to all the competitors. In addition, we show that our proposal beats linear SVM in the case of a pedestrian detection scenario.


K-nearest neighbors Prototype selection Classification Dominant set Data reduction 


  1. 1.
    Chang, C.C., Lin, C.J.: {LIBSVM}: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2(3), 27:1–27:27 (2011)Google Scholar
  2. 2.
    Cohen, J.: A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement 20(1), 37–46 (1960)CrossRefGoogle Scholar
  3. 3.
    Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions on Information Theory 13(1), 21–27 (1967)CrossRefzbMATHGoogle Scholar
  4. 4.
    Dalal, N., Triggs, W.: Histograms of Oriented Gradients for Human Detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR 2005, vol. 1(3), pp. 886–893 (2004)Google Scholar
  5. 5.
    Enzweiler, M., Gavrila, D.M.: Monocular Pedestrian Detection: Survey and Experiments. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(12), 2179–2195 (2009)CrossRefGoogle Scholar
  6. 6.
    Garcia, S., Derrac, J., Cano, J., Herrera, F.: Prototype selection for nearest neighbor classification: taxonomy and empirical study. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(3), 417–435 (2012)CrossRefGoogle Scholar
  7. 7.
    Hou, J., Pelillo, M.: A simple feature combination method based on dominant sets. Pattern Recognition (2013)Google Scholar
  8. 8.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)CrossRefGoogle Scholar
  9. 9.
    Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recognition Letters 31(8), 651–666 (2010)CrossRefGoogle Scholar
  10. 10.
    Kibriya, A.M., Frank, E.: An Empirical Comparison of Exact Nearest Neighbour Algorithms. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 140–151. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Pavan, M., Pelillo, M.: Dominant sets and hierarchical clustering. In: Proceedings. Ninth IEEE International Conference on Computer Vision, vol. 1, pp. 362–369 (2003)Google Scholar
  12. 12.
    Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(1), 167–172 (2007)CrossRefGoogle Scholar
  13. 13.
    Rota Bulò, S., Bomze, I.M.: Infection and immunization: A new class of evolutionary game dynamics. Games and Economic Behavior 71(1), 193–211 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Wilson, D.R., Martinez, T.R.: Reduction Techniques for Instance-Based Learning Algorithms. Machine Learning 38(3), 257–286 (2000)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sebastiano Vascon
    • 1
  • Marco Cristani
    • 1
  • Marcello Pelillo
    • 2
  • Vittorio Murino
    • 1
  1. 1.Istituto Italiano di TecnologiaPattern Analysis and Computer Vision (PAVIS)GenovaItaly
  2. 2.DAISUniversity Ca’Foscari of VeniceVenezia MestreItaly

Personalised recommendations