Non–referenced Quality Assessment of Image Processing Methods in Infrared Non-destructive Testing

  • Thomas J. Ramírez-Rozo
  • Hernan D. Benítez-Restrepo
  • Julio C. García-Álvarez
  • German Castellanos-Domínguez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8157)


Infrared Non–Destructive Testing (IRNDT) uses several image processing techniques to enhance visual contrast and visibility of defects in inspected materials. The benchmarking of these techniques is often too qualitative due to a lack of quantitative criteria allowing to assess the qualities of the compared methods. In this work, we compare image processing techniques in IRNDT with a non–referenced (NR) image quality assessment (IQA) algorithm. Furthermore, we validate the NR IQA approach through a human–based quality evaluation and analyze statistical properties of IRNDT images. The results show a high correlation between NR IQA measure quality predictions and subjective evaluation. Moreover, the analysis evidenced a relationship of perceived image quality with 1) the spatial power spectral density, and 2) marginal and joint distributions of wavelet coefficients. This analysis provides a quantitative alternative when comparing image processing methods in IRNDT and can be used to develop specific IQA measure for IRNDT.


Blind quality assessment image quality infrared non-destructive testing natural scene statistics 


  1. 1.
    Balageas, D.L.: Defense and illustration of time-resolved pulsed thermography for nde. Quantitative Infra Red Thermography Journal 9(1), 3–32 (2012)CrossRefGoogle Scholar
  2. 2.
    Benítez, H.D.: Objective Image Quality Assessment in infrared non-destructive testing. In: XVII Symposium of Image, Signal Processing, and Artificial Vision, STSIVA (2012)Google Scholar
  3. 3.
    Castanedo, C.: Quantitative subsurface defect evaluation by pulsed phase thermography: depth retrieval with the phase. Ph.D. thesis, Université Laval (2005)Google Scholar
  4. 4.
    Clauset, A., Shalizi, C.R., Newman, M.E.: Power-law distributions in empirical data. SIAM Review 51(4), 661–703 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Deriugin, N.G.: The power spectrum and the correlation function of the television signal. Telecommunications 1(7), 1–12 (1956)Google Scholar
  6. 6.
    Duan, Y., Servais, P., Genest, M., Ibarra-Castanedo, C., Maldague, X.P.V.: ThermoPoD: A reliability study on active infrared thermography for the inspection of composite materials. Journal of Mechanical Science and Technology 26(7), 1985–1991 (2012)CrossRefGoogle Scholar
  7. 7.
    Field, D.J.: What is the goal of sensory coding? Neural Computation 6(4), 559–601 (1994)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Ibarra-Castanedo, C., Piau, J.M., Guilbert, S., Avdelidis, N.P., Genest, M., Bendada, A., Maldague, X.P.V.: Comparative study of active thermography techniques for the nondestructive evaluation of honeycomb structures. Research in Nondestructive Evaluation 20(1), 1–31 (2009)CrossRefGoogle Scholar
  9. 9.
    Maldague, X.: Introduction to NDT by active infrared thermography. Materials Evaluation 6(9), 1060–1073 (2002)Google Scholar
  10. 10.
    Maldague, X.: Theory and practice of infrared technology for nondestructive testing. New York (2001)Google Scholar
  11. 11.
    Moorthy, A.K., Bovik, A.C.: Blind image quality assessment: From natural scene statistics to perceptual quality. IEEE Transactions on Image Processing 20(12), 3350–3364 (2011)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Morris, N.J.W., Avidan, S., Matusik, W., Pfister, H.: Statistics of infrared images. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–7. IEEE (2007)Google Scholar
  13. 13.
    Omar, M., Hassan, M., Saito, K.: Optimizing thermography depth probing with a dynamic thermal point spread function. Infrared Physics & Technology 46(6), 506–514 (2005)CrossRefGoogle Scholar
  14. 14.
    Pickering, S., Almond, D.: Matched excitation energy comparison of the pulse and lock–in thermography NDE techniques. NDT and E International 41(7), 501–509 (2008)CrossRefGoogle Scholar
  15. 15.
    Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Transactions on Image Processing 15(11), 3440–3451 (2006)CrossRefGoogle Scholar
  16. 16.
    Shepard, S.M.: Advances in thermographic NDT. In: Infrared Technology and Applications XXIX, vol. 5074, pp. 882–887 (2003)Google Scholar
  17. 17.
    Wang, Z., Bovik, A.: A universal image quality index. IEEE Signal Processing Letters 9, 81–84 (2002)CrossRefGoogle Scholar
  18. 18.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004)CrossRefGoogle Scholar
  19. 19.
    Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: A feature similarity index for image quality assessment. IEEE Transactions on Image Processing 20(8), 2378–2386 (2011)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Thomas J. Ramírez-Rozo
    • 1
  • Hernan D. Benítez-Restrepo
    • 2
  • Julio C. García-Álvarez
    • 1
  • German Castellanos-Domínguez
    • 1
  1. 1.Universidad Nacional de ColombiaManizalesColombia
  2. 2.Pontificia Universidad JaverianaCaliColombia

Personalised recommendations