Advertisement

3D Femur Reconstruction Using X-Ray Stereo Pairs

  • Sonia Akkoul
  • Adel Hafiane
  • Eric Lespessailles
  • Rachid Jennane
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8157)

Abstract

In this paper, we present a 3D reconstruction method for the shape of the proximal femur using pairs of 2D radiographs. The femur shape reconstruction from a small number of images is a challenging task but it is desired as it lowers both the acquisition costs and the radiation dose compared to tomography. In this paper we investigate the reconstruction of the 3D proximal femur surface without any prior acknowledge and using a limited number of 2D images. The proposed method uses a contour points coordinates and compares three different distances to find the best matching between 2D point pairs. The impact of varying the angles between the selected images on the reconstructed 3D shape is tested. Obtained results show that it is possible to rebuild the proximal femur shape from a limited number of radiographs.

Keywords

Stereo reconstruction contour matching proximal femur 

References

  1. 1.
    Gamage, P., Xie, S.Q., Delmas, P., Xu, W.L.: Diagnostic radiograph based 3D bone reconstruction framework: Application to the femur. Comput. Med. Imaging Graph. 35(6), 427–437 (2011)CrossRefGoogle Scholar
  2. 2.
    Caponetti, L., Fanelli, A.M.: Computed-aided simulation for bone surgery. IEEE Comput. Graph. Appl. 13, 86–92 (1993)CrossRefGoogle Scholar
  3. 3.
    Laporte, S., Skalli, W., De Guise, J.A., Lavaste, F., Mitton, D.: A biplanar reconstruction method based on 2D and 3D contours: application to the distal femur. Comput. Methods Biomech. Engin. 6(1), 1–6 (2003)CrossRefGoogle Scholar
  4. 4.
    Le Bras, A., Laporte, S., Bousson, V., Mitton, D., De Guise, J.A., Laredo, J.D., Skalli, W.: 3D reconstruction of the proximal femur with low-dose digital stereoradiography. Comput. Aided Surg. 9(3), 51–57 (2004)CrossRefGoogle Scholar
  5. 5.
    Baka, N., Kaptein, B.L., de Bruijne, M., van Walsum, T., Giphart, J.E., Niessen, W.J., Lelieveldt, B.P.F.: 2D-3D shape reconstruction of the distal femur from stereo X-ray imaging using statistical shape models. Medical Image Analysis 15(6), 840–850 (2011)CrossRefGoogle Scholar
  6. 6.
    Whitmarsh, T., Humbert, L., De Craene, M., Del Rio Barquero, L.M., Frangi, A.F.: Reconstructing the 3D Shape and Bone Mineral Density Distribution of the Proximal Femur From Dual-Energy X-Ray Absorptiometry. IEEE Transactions on Medical Imaging 30(12) (2011)Google Scholar
  7. 7.
    Zheng, G., Gollmer, S., Schumann, S., Dong, X., Feilkas, T.: A 2D/3D correspondence building method for reconstruction of a patient-specific 3D bone surface model using point distribution models and calibrated X-ray images. Medical Image Analysis 13(6), 883–899 (2009)CrossRefGoogle Scholar
  8. 8.
    Cui, M., Femiani, J., Hu, J., Wonka, P., Razdan, A.: Curve matching for open 2D curves. Journal Pattern Recognition Letters 30(1), 1–10 (2009)CrossRefzbMATHGoogle Scholar
  9. 9.
    Frenkel, M., Basri, R.: Curve matching using the fast marching method. In: Rangarajan, A., Figueiredo, M.A.T., Zerubia, J. (eds.) EMMCVPR 2003. LNCS, vol. 2683, pp. 35–51. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Park, J.S., Han, J.H.: Contour matching: a curvature-based approach. Image and Vision Computing 16(3), 181–189 (1998)CrossRefGoogle Scholar
  11. 11.
    Feldkamp, L.A., Davis, L.C., Kress, J.W.: Practical cone-beam algorithm. J. Opt. Soc. Am. A 1(6), 612–619 (1984)CrossRefGoogle Scholar
  12. 12.
    Chappard, C., Marchadier, A., Benhamou, C.L.: Side-to-side and within-side variability of 3d bone microarchitecture by conventional micro-computed tomography of paired iliac crest biopsies. Bone 43(1), 203–208 (2008)CrossRefGoogle Scholar
  13. 13.
    Andette, M., Ferrie, F., Peters, T.: An Algorithmic Overview of Surface Registration Techniques for Medical Imaging. Medical Image Analysis 4, 201–217 (2000)CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error on simplified surfaces. Computer Graphics Forum, Blackwell Publishers 17(2), 167–174 (1998), http://vcg.sf.net CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sonia Akkoul
    • 1
  • Adel Hafiane
    • 2
  • Eric Lespessailles
    • 3
  • Rachid Jennane
    • 1
  1. 1.PRISME, EA 4229Univ. OrléansOrléansFrance
  2. 2.ENSI de Bourges, PRISME, EA 4229Univ. OrléansBourgesFrance
  3. 3.I3MTO, EA 4708, CHR d’OrléansUniv. OrléansOrléansFrance

Personalised recommendations