Evaluation of Low-Level Image Representations for Illumination-Insensitive Recognition of Textureless Objects

  • Sebastian Zambanini
  • Martin Kampel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8156)


In this paper the problem of recognizing textureless objects in unconstrained illumination and material conditions is investigated. We evaluate the discriminative power of various low-level image features for a pixelwise representation of the underlying surface characteristics of the object. For this purpose, a new dataset with rendered images of 3D models is used which allows to directly compare the influences of texture and material properties in an object recognition scenario. The results are further validated on a dataset of real object images and finally reveal that jets of single- and multi-scale even Gabor filter responses outperform other proposed features in scenarios with textureless objects and strong variations of illumination.


Face Recognition Recognition Performance Area Under Curve Synthetic Dataset Gradient Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adini, Y., Moses, Y., Ullman, S.: Face recognition: The problem of compensating for changes in illumination direction. PAMI 19(7), 721–732 (1997)CrossRefGoogle Scholar
  2. 2.
    Barrow, H., Tenenbaum, J.: Recovering intrinsic scene characteristics from images. Computer Vision Systems, 3–26 (1978)Google Scholar
  3. 3.
    Basri, R., Jacobs, D.: Lambertian reflectance and linear subspaces. PAMI 25(2), 218–233 (2003)CrossRefGoogle Scholar
  4. 4.
    Brown, M., Hua, G., Winder, S.: Discriminative learning of local image descriptors. PAMI 33(1), 43–57 (2011)CrossRefGoogle Scholar
  5. 5.
    Chen, H., Belhumeur, P., Jacobs, D.: In search of illumination invariants. In: CVPR, pp. 254–261 (2000)Google Scholar
  6. 6.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, pp. 886–893Google Scholar
  7. 7.
    Freeman, W., Adelson, E.: The design and use of steerable filters. PAMI 13(9), 891–906 (1991)CrossRefGoogle Scholar
  8. 8.
    Gabor, D.: Theory of communication. Journal of the Institute of Electrical Engineers 93, 429–457 (1946)Google Scholar
  9. 9.
    Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: Illumination cone models for face recognition under variable lighting and pose. PAMI 23(6), 643–660 (2001)CrossRefGoogle Scholar
  10. 10.
    Geusebroek, J., Burghouts, G., Smeulders, A.: The amsterdam library of object images. IJCV 61(1), 103–112 (2005)CrossRefGoogle Scholar
  11. 11.
    Gopalan, R., Jacobs, D.: Comparing and combining lighting insensitive approaches for face recognition. CVIU 114(1), 135–145 (2010)Google Scholar
  12. 12.
    Kamarainen, J., Kyrki, V., Kalviainen, H.: Invariance properties of gabor filter-based features-overview and applications. TIP 15(5), 1088–1099 (2006)Google Scholar
  13. 13.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)CrossRefGoogle Scholar
  14. 14.
    Moreels, P., Perona, P.: Evaluation of features detectors and descriptors based on 3d objects. IJCV 73(3), 263–284 (2007)CrossRefGoogle Scholar
  15. 15.
    Osadchy, M., Jacobs, D., Lindenbaum, M.: Surface dependent representations for illumination insensitive image comparison. PAMI 29(1), 98–111 (2007)CrossRefGoogle Scholar
  16. 16.
    Van De Sande, K., Gevers, T., Snoek, C.: Evaluating color descriptors for object and scene recognition. PAMI 32(9), 1582–1596 (2010)CrossRefGoogle Scholar
  17. 17.
    Wang, H., Li, S., Wang, Y.: Face recognition under varying lighting conditions using self quotient image. In: FG, pp. 819–824 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sebastian Zambanini
    • 1
  • Martin Kampel
    • 1
  1. 1.Computer Vision LabVienna University of TechnologyAustria

Personalised recommendations