Advertisement

A Natural Interface for the Training of Medical Personnel in an Immersive and Virtual Reality System

  • Alberto Del Bimbo
  • Andrea Ferracani
  • Daniele Pezzatini
  • Lorenzo Seidenari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8156)

Abstract

In this paper we present an immersive system, developed for the RIMSI project, designed for the training of medical and para-medical personnel in emergency medicine. Virtual reality systems have been used recently in combination with natural interaction systems for patients’ rehabilitation but are proving especially useful for educational applications in the field of medical training and teaching. The idea is to mimic real three-dimensional environments and to make them available through natural interaction to enable users to explore, interact, collaborate and assist patients in virtual scenarios that otherwise could not be simulated easily in the real world without an high cost (e.g. to prepare the environment for a plane or a car crash) or possible risks of injuries to actors involved in the simulation (e.g. perilous situations like a gas leak). In addition, these simulation scenarios, using a digital environment, are repeatable and can be recorded, easing the process of errors’ highlighting. The RIMSI prototype provides a virtual first aid scenario with interactive 3D graphics which can be controlled and navigated through a natural gesture interface based on KinectTM.

Keywords

virtual reality medical training body tracking 

References

  1. 1.
    Gunn, C., Hutchins, M., Stevenson, D., Adcock, M., Youngblood, P.: Using collaborative haptics in remote surgical training. In: Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC 2005), Italy (2005)Google Scholar
  2. 2.
    Allard, J., Cotin, S., Faure, F., Bensoussan, P.J., Poyer, F., Du-riez, C., et al.: SOFA - an Open Source Framework for Medical Simulation. Medicine Meets Virtual Reality 15, 1–6 (2007)Google Scholar
  3. 3.
    Oliveira, A.C.M.T.G., Botega, L.C., Pavarini, L., Rossatto, D.J., Nunes, F.L.S., Bezerra, A.: Virtual Reality Framework for Medical Training: Implementation of a deformation class using Java. In: Proceedings of the SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry (SIGGRAPH 2006), Hong Kong, pp. 347–351 (2006)Google Scholar
  4. 4.
    Basdogan, C., Ho, C.-H., Srinivasan, M.A.: Virtual environments for medical training: graphical and haptic simulation of laparoscopic common bile duct exploration. IEEE/ASME Transactions on Mechatronics 6(3), 269–285 (2001)CrossRefGoogle Scholar
  5. 5.
    Coles, T.R., Dwight, M., Nigel, W.J.: The role of haptics in medical training simulators: a survey of the state of the art. IEEE Transactions on Haptics 4(1), 51–66 (2011)CrossRefGoogle Scholar
  6. 6.
    Sales, B.R.A., Machado, L.S., Moraes, R.M.: Interactive Collaboration for Virtual Reality Systems related to Medical Education and Training. Technology and Medical Sciences, 157–162 (2011)Google Scholar
  7. 7.
    Montgomery, K., Bruyns, C., Brown, J., Sorkin, S., Mazzella, F., Thonier, G., Tellier, A., Lerman, B., Menon, A.: Spring: A General Framework for Collaborative, Real-time Surgical Simulation. In: Medicine Meets Virtual Reality (MMVR 2002), pp. 23–26 (2002)Google Scholar
  8. 8.
    Goktekin, T.G., Çavuşoğlu, M.C., Tendick, F., Sastry, S.: GiPSi: An Open Source Open Architecture Software Development Framework for Surgical Simulation. In: Cotin, S., Metaxas, D. (eds.) ISMS 2004. LNCS, vol. 3078, pp. 240–248. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Lok, B., Ferdig, R.E., Raij, A., Johnsen, K., Dickerson, R., Coutts, J., Stevens, A., Lind, D.S.: Applying virtual reality in medical communication education: current findings and potential teaching and learning benefits of immersive virtual patients. Virtual Real. 10(3), 185–195 (2006)CrossRefGoogle Scholar
  10. 10.
    Villeneuve, M., MacDonald, J.: Toward 2020: Visions for nursing. Technical Report. Canadian Nurses Association, Ottawa, Ontario, Canada (2006)Google Scholar
  11. 11.
    Cowan, B., Shelley, M., Sabri, H., Kapralos, B., Hogue, A., Hogan, M., Jenkin, M., Goldsworthy, S., Rose, L., Dubrowski, A.: Interprofessional care simulator for critical care education. In: Proceedings of the Conference on Future Play: Research, Play, Share (Future Play 2008), pp. 260–261. ACM, New York (2008)CrossRefGoogle Scholar
  12. 12.
    Lange, B., Koenig, S., McConnell, E., Chang, C., Juang, R., Suma, E., Bolas, M., Rizzo, A.: Interactive game-based rehabilitation using the Microsoft Kinect. In: IEEE Virtual Reality Short Papers and Posters, VRW (2012)Google Scholar
  13. 13.
    Honey, M.L.L., Diener, S., Connor, K., Veltman, M., Bodily, D.: Teaching in virtual space: Second Life simulation for haemorrhage management. In: Ascilite Conference, Aukland (2009)Google Scholar
  14. 14.
    Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finocchio, M., Blake, A., Cook, M., Moore, R.: Real-time human pose recognition in parts from single depth images. Commun. ACM 56(1), 116–124 (2013)CrossRefGoogle Scholar
  15. 15.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. Computer Vision and Image Understanding 110(3), 346–359 (2008)CrossRefGoogle Scholar
  16. 16.
    Bagdanov, A.D., Del Bimbo, A., Seidenari, L., Usai, L.: Real-time hand status recognition from rgb-d imagery. In: International Conference on Pattern Recognition (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alberto Del Bimbo
    • 1
    • 2
  • Andrea Ferracani
    • 1
    • 2
  • Daniele Pezzatini
    • 1
    • 2
  • Lorenzo Seidenari
    • 1
    • 2
  1. 1.MICCUniversity of FirenzeFirenzeItaly
  2. 2.Media Integration and Communication CenterUniversitá degli Studi di FirenzeFirenzeItaly

Personalised recommendations