VSCAN: An Enhanced Video Summarization Using Density-Based Spatial Clustering

  • Karim M. Mahmoud
  • Mohamed A. Ismail
  • Nagia M. Ghanem
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8156)


In this paper, we present VSCAN, a novel approach for generating static video summaries. This approach is based on a modified DBSCAN clustering algorithm to summarize the video content utilizing both color and texture features of the video frames. The paper also introduces an enhanced evaluation method that depends on color and texture features. Video Summaries generated by VSCAN are compared with summaries generated by other approaches found in the literature and those created by users. Experimental results indicate that the video summaries generated by VSCAN have a higher quality than those generated by other approaches.


Video Summarization Color and Texture Clustering Evaluation Method 


  1. 1.
    IEEE Standard Glossary of Image Processing and Pattern Recognition Terminology, IEEE Std. 610.4-1990 (1990)Google Scholar
  2. 2.
    Aherne, F.J., Thacker, N.A., Rockett, P.I.: The bhattacharyya metric as an absolute similarity measure for frequency coded data. Kybernetika 34(4), 363–368 (1998)MathSciNetzbMATHGoogle Scholar
  3. 3.
    de Avila, S.E.F., Lopes, A.P.B., et al.: Vsumm: A mechanism designed to produce static video summaries and a novel evaluation method. Pattern Recognition Letters 32(1), 56–68 (2011)CrossRefGoogle Scholar
  4. 4.
    Blanken, H.M., De Vries, A.P., Blok, H.E., Feng, L.: Multimedia retrieval. Springer, Heidelberg (2007)CrossRefzbMATHGoogle Scholar
  5. 5.
    DeMenthon, D., Kobla, V., Doermann, D.: Video summarization by curve simplification. In: Proceedings of the Sixth ACM International Conference on Multimedia, pp. 211–218. ACM Press (1998)Google Scholar
  6. 6.
    Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data mining, vol. 1996, pp. 226–231. AAAI Press (1996)Google Scholar
  7. 7.
    Furini, M., Geraci, F., Montangero, M., Pellegrini, M.: Stimo: Still and moving video storyboard for the web scenario. Multimedia Tools and Applications 46(1), 47–69 (2010)CrossRefGoogle Scholar
  8. 8.
    Girgensohn, A., Boreczky, J., Wilcox, L.: Keyframe-based user interfaces for digital video. Computer 34(9), 61–67 (2001)CrossRefGoogle Scholar
  9. 9.
    Kailath, T.: The divergence and bhattacharyya distance measures in signal selection. IEEE Transactions on Communication Technology 15(1), 52–60 (1967)CrossRefGoogle Scholar
  10. 10.
    Liu, T., Zhang, X., Feng, J., Lo, K.T.: Shot reconstruction degree: a novel criterion for key frame selection. Pattern Recognition Letters 25(12), 1451–1457 (2004)CrossRefGoogle Scholar
  11. 11.
    Mundur, P., Rao, Y., Yesha, Y.: Keyframe-based video summarization using delaunay clustering. International Journal on Digital Libraries 6(2), 219–232 (2006)CrossRefGoogle Scholar
  12. 12.
    Parimala, M., Lopez, D., Senthilkumar, N.: A survey on density based clustering algorithms for mining large spatial databases. International Journal of Advanced Science and Technology 31, 59–66 (2011)Google Scholar
  13. 13.
    Pfeiffer, S., Lienhart, R., Fischer, S., Effelsberg, W.: Abstracting digital movies automatically. Journal of Visual Communication and Image Representation 7(4), 345–353 (1996)CrossRefGoogle Scholar
  14. 14.
    Singha, M., Hemachandran, K.: Signal & image processing: An international journal (sipij). Content Based Image Retrieval using Color and Texture 3(1), 39–57 (2012)Google Scholar
  15. 15.
    Smith, J.R., Chang, S.F.: Transform features for texture classification and discrimination in large image databases. In: Proceedings of the IEEE International Conference on Image Processing, ICIP 1994, vol. 3, pp. 407–411 (1994)Google Scholar
  16. 16.
    Stanković, R.S., Falkowski, B.J.: The haar wavelet transform: its status and achievements. Computers & Electrical Engineering 29(1), 25–44 (2003)CrossRefzbMATHGoogle Scholar
  17. 17.
    Stehling, R.O., Nascimento, M.A., Falcao, A.X.: Techniques for color-based image retrieval. Multimedia Mining, 61–82 (2002)Google Scholar
  18. 18.
    Swain, M.J., Ballard, D.H.: Color indexing. International Journal of Computer Vision 7(1), 11–32 (1991)CrossRefGoogle Scholar
  19. 19.
    Truong, B.T., Venkatesh, S.: Video abstraction: A systematic review and classification. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP) 3(1), 3 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Karim M. Mahmoud
    • 1
  • Mohamed A. Ismail
    • 1
  • Nagia M. Ghanem
    • 1
  1. 1.Computer and Systems Engineering Department, Faculty of EngineeringAlexandria UniversityAlexandriaEgypt

Personalised recommendations