Advertisement

Structured Multi-class Feature Selection for Effective Face Recognition

  • Giovanni Fusco
  • Luca Zini
  • Nicoletta Noceti
  • Francesca Odone
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8156)

Abstract

This paper addresses the problem of real time face recognition in unconstrained environments from the analysis of low quality video frames. It focuses in particular on finding an effective and fast to compute (that is, sparse) representation of faces, starting from classical Local Binary Patterns (LBPs). The two contributions of the paper are a new formulation of Group LASSO for structured feature selection (MCGroup LASSO) to cope directly with multi-class settings, and a face recognition pipeline based on a representation derived from MC-GrpLASSO. We present an extensive experimental analysis on two benchmark datasets, MOBO and Choke Point, and on a more complex dataset acquired in-house over a large temporal span. We compare our results with state-of-the-art approaches and show the superiority of our method in terms of both performances and sparseness of the obtained solution.

Keywords

Regularized feature selection Group LASSO multi-class feature selection face recognition 

References

  1. 1.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Candes, E., Tao, T.: The Dantzig selector: statistical estimation when pis much larger than n. The Annals of Statistics 35(6), 2313–2351 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chapelle, O., Keerthi, S.: Multi-class feature selection with support vector machines. In: Proc. of the American Statistical Association (2008)Google Scholar
  4. 4.
    Destrero, A., Mol, C., Odone, F., Verri, A.: A regularized framework for feature selection in face detection and authentication. IJCV 83(2), 164–177 (2009)CrossRefGoogle Scholar
  5. 5.
    Gross, R., Shi, J.: The cmu motion of body database. Tech. rep., Robotics Institute, Carnegie Mellon University (2001)Google Scholar
  6. 6.
    Li, H.X., Wang, S., Jensen-shannon, Y.: boosting learning for object recognition. CVPR 2, 144–149 (2005)Google Scholar
  7. 7.
    Hadid, A., Pietikäinen, M., Li, S.Z.: Learning personal specific facial dynamics for face recognition from videos. In: Zhou, S.K., Zhao, W., Tang, X., Gong, S. (eds.) AMFG 2007. LNCS, vol. 4778, pp. 1–15. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Jain, B.J., Wysotzki, F.: A competitive winner-takes-all architecture for classification and pattern recognition of structures. In: Hancock, E.R., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 259–270. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Mosci, S., Rosasco, L., Santoro, M., Verri, A., Villa, S.: Solving structured sparsity regularization with proximal methods. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part II. LNCS, vol. 6322, pp. 418–433. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. PAMI (7) (2002)Google Scholar
  11. 11.
    Ruan, C., Ruan, Q., Li, X.: Real adaboost feature selection for face recognition. In: CSP, pp. 1402–1405 (2010)Google Scholar
  12. 12.
    Sanderson, C., Lovell, B.C.: Multi-region probabilistic histograms for robust and scalable identity inference. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 199–208. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Shelton, J., Dozier, G., Bryant, K., Adams, J., Popplewell, K., Abegaz, T., Purrington, K., Woodard, D., Ricanek, K.: Genetic based lbp feature extraction and selection for facial recognition. In: Southeast Regional Conf., pp. 197–200 (2011)Google Scholar
  14. 14.
    Shen, L., Bai, L., Bardsley, D., Wang, Y.: Gabor feature selection for face recognition using improved adaBoost learning. In: Li, S.Z., Sun, Z., Tan, T., Pankanti, S., Chollet, G., Zhang, D. (eds.) IWBRS 2005. LNCS, vol. 3781, pp. 39–49. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1) (1996)Google Scholar
  16. 16.
    Wong, Y., Chen, S., Mau, S., Sanderson, C., Lovell, B.C.: Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition. In: CVPRW, pp. 74–81 (2011)Google Scholar
  17. 17.
    Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B 68 (2006)Google Scholar
  18. 18.
    Zhang, G., Huang, X., Li, S.Z., Wang, Y., Wu, X.: Boosting local binary pattern (LBP)-based face recognition. In: Li, S.Z., Lai, J.-H., Tan, T., Feng, G.-C., Wang, Y. (eds.) Sinobiometrics 2004. LNCS, vol. 3338, pp. 179–186. Springer, Heidelberg (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Giovanni Fusco
    • 1
  • Luca Zini
    • 1
  • Nicoletta Noceti
    • 1
  • Francesca Odone
    • 1
  1. 1.DIBRISUniversità di GenovaItaly

Personalised recommendations