Integrating Color Sampling into Depth Based Bilayer Segmentation

  • Lorenzo Sorgi
  • Markus Schlosser
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8156)

Abstract

A trend in the computer vision community is observed towards the simultaneous exploitation of color images and depth maps. In this context we propose a novel approach for bi-layer segmentation, whose main contribution is given by the integration of a color classifier based on color sampling, within a depth-based segmentation framework. We have run tests on datasets available online and the outcoming results pointed out the effectiveness of this approach and its suitability for integration in automatic segmentation systems.

Keywords

Video Sequence Color Sampling Video Segmentation Reference Pixel Color Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Arif, O., et al.: Visual tracking and segmentation using Time-of-Flight Sensor. In: IEEE Int. Conf. on Image Proc., pp. 2241–2244 (2010)Google Scholar
  2. 2.
    Baker, S., Matthews, I.: Lucas-Kanade 20 Years On: A Unifying Framework. Int. J. Comput. Vision 56(3), 221–255 (2004)CrossRefGoogle Scholar
  3. 3.
    Benezeth, Y., Jodoin, P.M., Emile, B., Laurent, H., Rosenberger, C.: Review and evaluation of commonly-implemented background subtraction algorithms. In: 19th International Conference on Pattern Recognition, pp. 1–4 (2008)Google Scholar
  4. 4.
    Bleiweiss, A., Werman, M.: Fusing Time-of-Flight Depth and Color for Real-Time Segmentation and Tracking. In: Kolb, A., Koch, R. (eds.) Dyn3D 2009. LNCS, vol. 5742, pp. 58–69. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Cho, J., Ziegler, R., Gross, M., Lee, K.: Improving alpha matte with depth information. IEICE Electronics Express 6(22), 1602–1607 (2009)CrossRefGoogle Scholar
  6. 6.
    Dal Mutto, C., Zanuttigh, P., Cortelazzo, G.M.: Scene Segmentation by Color and Depth Information and its Application. In: STreaming Day (2010)Google Scholar
  7. 7.
    Gastal, E., Oliveira, M.: Shared Sampling for Real-Time Alpha Matting. Computer Graphics Forum 2(29), 575–584 (2010)CrossRefGoogle Scholar
  8. 8.
    He, H., McKinnon, et al.: Graphcut-based interactive segmentation using colour and depth cues. In: Australasian Conf. on Robotics and Automation ACRA (2010)Google Scholar
  9. 9.
    Kolmogorov, V., Criminisi, A., Blake, A., Cross, G., Rother, C.: Bi-Layer Segmentation of Binocular Stereo Video. In: Int. Conf. on Computer Vision and Pattern Recognition, vol. 2, pp. 407–414 (2005)Google Scholar
  10. 10.
    Leens, J., Piérard, S., Barnich, O., Van Droogenbroeck, M., Wagner, J.-M.: Combining Color, Depth, and Motion for Video Segmentation. In: Fritz, M., Schiele, B., Piater, J.H. (eds.) ICVS 2009. LNCS, vol. 5815, pp. 104–113. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Wang, J., Cohen, M.F.: Image and video matting: a survey. Found. Trends. Comput. Graph. Vis. 3(2), 97–175 (2007)CrossRefGoogle Scholar
  12. 12.
    Wang, J., Cohen, M.: Optimized Color Sampling for Robust Matting. In: Int. Conf. on Computer Vision and Pattern Recognition (2007)Google Scholar
  13. 13.
    Wang, L., Gong, M., Zhang, C., Yang, R., Zhang, C., Yang, Y.: Automatic Real-Time Video Matting Using Time-of-Flight Camera and Multichannel Poisson Equations. Int. Journal of Computer Vision 97(1), 104–121 (2012)CrossRefMATHGoogle Scholar
  14. 14.
    Wang, L., Zhang, C., Yang, R., Zhang, C.: TofCut: Towards Robust Real-time Foreground Extraction Using a Time-of-Flight Camera. In: 3DPVT Conf. (2010)Google Scholar
  15. 15.
    Zhang, G., Jia, J., Hua, W., Bao, H.: Robust Bilayer Segmentation and Motion/Depth Estimation with a Handheld Camera. IEEE Trans. on Pattern Anal. Mach. Intell. 33(3) (2011)Google Scholar
  16. 16.
    Zhu, J., Liao, M., Yang, R., Pan, Z.: Joint depth and alpha matte optimization via fusion of stereo and time-of-flight sensor. In: Int. Conf. on Computer Vision and Pattern Recognition, pp. 453–460 (2009)Google Scholar
  17. 17.
    Lin, F., Cohen, W.: Power Iteration Clustering. In: 27th Int. Conf. on Machine Learning (2010)Google Scholar
  18. 18.
    Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph cuts? IEEE Trans. on Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lorenzo Sorgi
    • 1
  • Markus Schlosser
    • 1
  1. 1.Technicolor R&IHannoverGermany

Personalised recommendations