Head Direction Estimation from Silhouette

  • Amina Bensebaa
  • Slimane Larabi
  • Neil M. Robertson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8156)


Due to the absence of features that may be extracted from face, heading direction estimation for low resolution images is a difficult task and requires the taking into account all information that may be inferred from human body in image, particularly its silhouette. We propose in this paper a set of geometric features extracted from shape head-shoulders, feet and knees shapes which jointly allow the estimation of body direction. Other features extracted from head-shoulders are proposed for heading direction estimation based on body direction. The constraint of camera position related to proposed features is discussed and results of conducted experiments are presented.


Head direction Body direction Low resolution Silhouette 


  1. 1.
    Ba, S.O., Odobez, J.M.: Multiperson Visual Focus of Attention from Head Pose and Meeting Contextual Cues. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(1), 101–116 (2011)CrossRefGoogle Scholar
  2. 2.
    Binford, T.O., Levitt, T.S.: Quasi-invariants: Theory and exploitation. In: Proceedings of DARPA Image Understanding Workshop, pp. 819–829 (1993)Google Scholar
  3. 3.
    Benfold, B., Reid, I.D.: Colour Invariant Head Pose Classification in Low Resolution Video. In: Proceedings of the 19th British Machine Vision Conference (2008)Google Scholar
  4. 4.
    Benfold, B., Reid, I.D.: Unsupervised Learning of a Scene-Specific Coarse Gaze Estimator. In: Proceedings of the International Conference on Computer Vision (ICCV), pp. 2344–2351 (2011)Google Scholar
  5. 5.
    Chetverikov, D.: A Simple and Efficient Algorithm for Detection of High Curvature Points in Planar Curves. In: Petkov, N., Westenberg, M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 746–753. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Gavrila, D.M.: The Visual Analysis of Human Movement: A Survey. Computer Vision and Image Understanding 73(1), 82–98 (1999)CrossRefzbMATHGoogle Scholar
  7. 7.
    Gavrila, D.M.: A Bayesian, Exemplar-Based Approach to Hierarchical Shape Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(8), 1408–1421 (2007)CrossRefGoogle Scholar
  8. 8.
    Lanz, O., Brunelli, R.: Joint Bayesian Tracking of Head Location and Pose from Low-Resolution Video. In: Stiefelhagen, R., Bowers, R., Fiscus, J.G. (eds.) RT 2007 and CLEAR 2007. LNCS, vol. 4625, pp. 287–296. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Launila, A., Sullivan, J.: Contextual Features for Head Pose Estimation in Football Games. In: International Conference on Pattern Recognition (ICPR 2010), Turkey, pp. 340–343 (2010)Google Scholar
  10. 10.
    Lin, Z., Davis, L.S.: Shape-Based Human Detection and Segmentation via Hierarchical Part-Template Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(4), 604–618 (2010)CrossRefGoogle Scholar
  11. 11.
    Murphy-Chutorian, E., Trivedi, M.M.: Head Pose Estimation in Computer Vision: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(4), 607–626 (2009)CrossRefGoogle Scholar
  12. 12.
    Ozturk, O., Yamasaki, T., Aizawa, K.: Tracking of humans and estimation of body/head orientation from top-view single camera for visual focus of attention analysis. In: IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1020–1027 (2009)Google Scholar
  13. 13.
    Robertson, N., Reid, I.D.: Estimating Gaze Direction from Low-Resolution Faces in Video. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 402–415. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Sun, Y., Wang, Y., He, Y., Hua, Y.: Head-and-shoulder detection in varying pose. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3611, pp. 12–20. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Singh, V.K., Nevatia, R., Huang, C.: Efficient Inference with Multiple Heterogeneous Part Detectors for Human Pose Estimation. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 314–327. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Tian, Y.L., Brown, L., Connell, C., Sharat, P., Arun, H., Senior, A., Bolle, R.: Absolute head pose estimation from overhead wide-angle cameras. In: IEEE International Workshop on Analysis and Modeling of Faces and Gestures, AMFG 2003, pp. 92–99 (2003)Google Scholar
  17. 17.
    Voit, M., Nickel, K., Stiefelhagen, R.: A Bayesian Approach for Multi-view Head Pose Estimation. In: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 31–34 (2006)Google Scholar
  18. 18.
    Zheng, J., Ramírez, G.A., Fuentes, O.: Face detection in low-resolution color images. In: Campilho, A., Kamel, M. (eds.) ICIAR 2010. LNCS, vol. 6111, pp. 454–463. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Amina Bensebaa
    • 1
  • Slimane Larabi
    • 1
  • Neil M. Robertson
    • 2
  1. 1.Computer Science DepartmentUniversity of Sciences and Technology Houari BoumedieneEl AliaAlgeria
  2. 2.Edinburgh Research Partnership in Engineering and Mathematics, School of Engineering and Physical SciencesHeriot-Watt UniversityEdinburghUK

Personalised recommendations