Advertisement

Approximated Overlap Error for the Evaluation of Feature Descriptors on 3D Scenes

  • Fabio Bellavia
  • Cesare Valenti
  • Carmen Alina Lupascu
  • Domenico Tegolo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8156)

Abstract

This paper presents a new framework to evaluate feature descriptors on 3D datasets. The proposed method employs the approximated overlap error in order to conform with the reference planar evaluation case of the Oxford dataset based on the overlap error. The method takes into account not only the keypoint centre but also the feature shape and it does not require complex data setups, depth maps or an accurate camera calibration. Only a ground-truth fundamental matrix should be computed, so that the dataset can be freely extended by adding further images. The proposed approach is robust to false positives occurring in the evaluation process, which do not introduce any relevant changes in the results, so that the framework can be used unsupervised. Furthermore, the method has no loss in recall, which can be unsuitable for testing descriptors. The proposed evaluation compares on the SIFT and GLOH descriptors, used as references, and the recent state-of-the-art LIOP and MROGH descriptors, so that further insight on their behaviour in 3D scenes is provided as contribution too.

Keywords

keypoint descriptors descriptor evaluation epipolar geometry SIFT LIOP MROGH 

References

  1. 1.
    Bellavia, F., Tegolo, D.: New error measures to evaluate features on three-dimensional scenes. In: Maino, G., Foresti, G.L. (eds.) ICIAP 2011, Part I. LNCS, vol. 6978, pp. 524–533. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Bellavia, F., Tegolo, D., Valenti, C.: Improving Harris corner selection strategy. IET Computer Vision 5(2) (2011)Google Scholar
  3. 3.
    Brown, M., Hua, G., Winder, S.: Discriminative learning of local image descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(1), 43–57 (2011)CrossRefGoogle Scholar
  4. 4.
    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Fan, B., Wu, F., Hu, Z.: Rotationally invariant descriptors using intensity order pooling. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(10), 2031–2045 (2012)CrossRefGoogle Scholar
  6. 6.
    Forssén, P., Lowe, D.G.: Shape descriptors for maximally stable extremal regions. In: International Conference on Computer Vision. IEEE Computer Society Press (2007)Google Scholar
  7. 7.
    Fraundorfer, F., Bischof, H.: A novel performance evaluation method of local detectors on non-planar scenes. In: IEEE Conference on Computer Vision and Pattern Recognition, p. 33. IEEE Computer Society Press (2005)Google Scholar
  8. 8.
    Gauglitz, S., Höllerer, T., Turk, M.: Evaluation of interest point detectors and feature descriptors for visual tracking. Int. J. Comput. Vision 94(3), 335–360 (2011)CrossRefzbMATHGoogle Scholar
  9. 9.
    Gil, A., Mozos, O.M., Ballesta, M., Reinoso, O.: A comparative evaluation of interest point detectors and local descriptors for visual SLAM. Machine Vision and Applications (MVA) 21(6), 905–920 (2010)CrossRefGoogle Scholar
  10. 10.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2169–2178. IEEE Computer Society Press (2006)Google Scholar
  11. 11.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  12. 12.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  13. 13.
    Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. International Journal of Computer Vision 65(1-2), 43–72 (2005)CrossRefGoogle Scholar
  14. 14.
    Miksik, O., Mikolajczyk, K.: Evaluation of local detectors and descriptors for fast feature matching. In: International Conference on Pattern Recognition (2012)Google Scholar
  15. 15.
    Moreels, P., Perona, P.: Evaluation of features detectors and descriptors based on 3d objects. International Journal of Computer Vision 73, 263–284 (2007)CrossRefGoogle Scholar
  16. 16.
    Snavely, N., Seitz, S., Szeliski, R.: Modeling the world from internet photo collections. International Journal of Computer Vision 80(2), 189–210 (2008)CrossRefGoogle Scholar
  17. 17.
    Strecha, C., von Hansen, W., Gool, L.V., Fua, P., Thoennessen, U.: On benchmarking camera calibration and multi-view stereo for high resolution imagery. In: Computer Vision and Pattern Recognition (2008)Google Scholar
  18. 18.
    Szeliski, R.: Computer Vision: Algorithms and Applications. Springer (2010)Google Scholar
  19. 19.
    Wang, Z., Fan, B., Wu, F.: Local intensity order pattern for feature description. In: IEEE International Conference on Computer Vision, pp. 603–610 (2011)Google Scholar
  20. 20.
    Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspondence. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, Springer, Heidelberg (1994)Google Scholar
  21. 21.
    Zhang, J., Marszałek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: a comprehensive study. International Journal of Computer Vision 73(2), 213–238 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fabio Bellavia
    • 1
  • Cesare Valenti
    • 2
  • Carmen Alina Lupascu
    • 2
  • Domenico Tegolo
    • 2
  1. 1.Dipartimento di Sistemi InformaticiUniversità degli Studi di FirenzeItaly
  2. 2.Dipartimento di Matematica e InformaticaUniversità degli Studi di PalermoItaly

Personalised recommendations