Approximating the Skeleton for Fine-to-Coarse Shape Representation

  • Luca Serino
  • Carlo Arcelli
  • Gabriella Sanniti di Baja
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8156)


A method to generate a hierarchical skeleton structure is presented. The curve skeleton of a 3D object is used, where each voxel is labeled with the radius of the associated ball, i.e., with its distance from the complement of the object. Polygonal approximation is accomplished on all skeleton branches represented in a 4D space, where the coordinates are the (x,y,z) coordinates plus the radius r associated with each skeleton voxel. In this way, skeleton branches are divided into geometrically straight line segments, whose voxels are characterized by either constant or linearly increasing/decreasing radius. By increasing the threshold used for polygonal approximation the hierarchical skeleton structure is generated, which allows the user to get a fine-to-coarse shape representation.


Skeleton shape representation polygonal approximation 


  1. 1.
    Siddiqi, K., Pizer, S.M. (eds.): Medial Representations: Mathematics, Algorithms and Applications. Springer, Berlin (2008)Google Scholar
  2. 2.
    Shen, W., Bai, X., Hu, R., Wang, H., Latecki, L.J.: Skeleton growing and pruning with bending potential ratio. Pattern Recognition 44, 196–209 (2011)CrossRefGoogle Scholar
  3. 3.
    Sanniti di Baja, G., Thiel, E.: A multiresolution shape description algorithm. In: Chetverikov, D., Kropatsch, W.G. (eds.) CAIP 1993. LNCS, vol. 719, pp. 208–215. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  4. 4.
    Borgefors, G.: On digital distance transform in three dimensions. CVIU 64, 368–376 (1996)Google Scholar
  5. 5.
    Arcelli, C., Sanniti di Baja, G., Serino, L.: Distance driven skeletonization in voxel images. IEEE Trans. PAMI 33, 709–720 (2011)CrossRefGoogle Scholar
  6. 6.
    Nystrom, I., Borgefors, G.: Synthesising objects and scenes using the reverse distance transformation in 2D and 3D. In: Braccini, C., Vernazza, G., DeFloriani, L. (eds.) ICIAP 1995. LNCS, vol. 974, pp. 441–446. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  7. 7.
    Ramer, U.: An iterative procedure for the polygonal approximation of plane curves. CGIP 1, 244–256 (1972)Google Scholar
  8. 8.
    Rosenfeld, A.: Convex digital arcs. IEEE Trans. Computers C-23, 1264–1269 (1974)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton Shape Benchmark. In: Shape Modeling International, Genova, Italy (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Luca Serino
    • 1
  • Carlo Arcelli
    • 1
  • Gabriella Sanniti di Baja
    • 1
  1. 1.Institute of Cybernetics “E. Caianiello”CNRNaplesItaly

Personalised recommendations