Skip to main content

Structure and electronic properties of hydrated mesityl oxide: a sequential quantum mechanics/molecular mechanics approach

  • Regular Article
  • Chapter
  • First Online:
Book cover Marco Antonio Chaer Nascimento

Part of the book series: Highlights in Theoretical Chemistry ((HITC,volume 4))

  • 505 Accesses

Abstract

The hydration of mesityl oxide (MOx) was investigated through a sequential quantum mechanics/ molecular mechanics approach. Emphasis was placed on the analysis of the role played by water in the MOx syn–anti equilibrium and the electronic absorption spectrum. Results for the structure of the MOx–water solution, free energy of solvation and polarization effects are also reported. Our main conclusion was that in gas-phase and in low-polarity solvents, the MOx exists dominantly in synform and in aqueous solution in anti-form. This conclusion was supported by Gibbs free energy calculations in gas phase and in-water by quantum mechanical calculations with polarizable continuum model and thermodynamic perturbation theory in Monte Carlo simulations using a polarized MOx model. The consideration of the in-water polarization of the MOx is very important to correctly describe the solute–solvent electrostatic interaction. Our best estimate for the shift of the π–π* transition energy of MOx, when it changes from gas-phase to water solvent, shows a red-shift of -2,520 ± 90 cm-1, which is only 110 cm-1 (0.014 eV) below the experimental extrapolation of -2,410 ± 90 cm-1. This red-shift of around -2,500 cm-1 can be divided in two distinct and opposite contributions. One contribution is related to the synanti conformational change leading to a blue-shift of ~ 1,700 cm-1. Other contribution is the solvent effect on the electronic structure of the MOx leading to a red-shift of around -4,200 cm-1. Additionally, this red-shift caused by the solvent effect on the electronic structure can by composed by approximately 60 % due to the electrostatic bulk effect, 10 % due to the explicit inclusion of the hydrogen-bonded water molecules and 30 % due to the explicit inclusion of the nearest water molecules.

Electronic supplementary material The online version of this article (doi:10.1007/s00214-012-1214-y) contains supplementary material, which is available to authorized users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reichardt C (1979) Solvent effects in organic chemistry. Verlag Chemie, Weinheim, New York

    Google Scholar 

  2. Reichardt C (1994) Chem Rev 94:2319

    Article  CAS  Google Scholar 

  3. Maitland GC, Rigby M, Smith EB, Wakeham WA (1987) Intermolecular forces-their origin and determination. Oxford University Press, Oxford

    Google Scholar 

  4. Ratajczak H, Orville-Thomas WJ (1980–1982) Molecular Interactions. vol. 1-3 Wiley, New York

    Google Scholar 

  5. Timasheff SN (1970) Acc Chem Res 3:62

    Article  CAS  Google Scholar 

  6. Suppan P, Ghoneim N (1997) Solvatochromism. The Royal Society of Chemistry, London

    Google Scholar 

  7. Sheppard SE (1942) Rev Mod Phys 14:303

    Article  CAS  Google Scholar 

  8. Archer WL (1996) Industrial solvents handbook. Dekker, New York

    Google Scholar 

  9. Reichardt C (1965) Angew Chem 4:29

    Article  Google Scholar 

  10. Novaki PL, El Soud OA (1997) Ber Bunsenges Phys Chem 101:902

    Article  CAS  Google Scholar 

  11. Kosower EM (1968) An introduction to physical organic chemistry. Wiley, New York

    Google Scholar 

  12. Streitwieser A, Heathcock CH, Kosower EM (1992) Introduction to organic chemistry. McMillan, New York

    Google Scholar 

  13. Buckingham DA, Lippert E, Bratos E (eds) (1978) Organic liquids—structure, dynamics and chemical properties. Wiley, New York

    Google Scholar 

  14. Stross FH, Monger JM, Finch HV (1947) J Am Chem Soc 69:1627

    Article  CAS  Google Scholar 

  15. Gray HF Jr, Rasmussen RS, Tunnicliff DD (1947) J Am Chem Soc 69:1630

    Article  CAS  Google Scholar 

  16. Kosower EM (1958) J Am Chem Soc 80:3261

    Article  CAS  Google Scholar 

  17. Woodward RB (1941) J Am Chem Soc 63:1123

    Article  CAS  Google Scholar 

  18. Turner RB, Voitle DM (1951) J Am Chem Soc 73:1403

    Article  CAS  Google Scholar 

  19. Forbes WF, Shilton R (1959) J Am Chem Soc 81:786

    Article  CAS  Google Scholar 

  20. Coutinho K, Canuto S (2000) J Chem Phys 113:9132

    Article  CAS  Google Scholar 

  21. Coutinho K, Canuto S, Zerner MC (2000) J Chem Phys 112:9874

    Article  CAS  Google Scholar 

  22. Parr RG, Yang W (1994) Density functional theory of atoms and molecules. Oxford Science Publications, Oxford

    Google Scholar 

  23. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  24. Imamura Y, Otsuka T, Nakai H (2007) J Comput Chem 28:2067

    Article  CAS  Google Scholar 

  25. Moller C, Plesset MS (1934) Phys Rev 46:618

    Article  CAS  Google Scholar 

  26. Krishnan R, Pople JA (1978) Int J Quantum Chem 14:91

    Article  CAS  Google Scholar 

  27. Ditchfield D, Hehre WJ, Pople JA (1971) J Chem Phys 54:724

    Article  CAS  Google Scholar 

  28. Dunning Jr TH(1987) J Chem Phys 90:1007

    Google Scholar 

  29. Fiolhais C, Nogueira F, Marques M (eds) (2003) A primer in density functional theory. Chapter 4, Springer, New York

    Google Scholar 

  30. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Coss M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA(2004) Gaussian 03, Revision D.01. Gaussian, Inc., Wallingford CT

    Google Scholar 

  31. Stanton JF, Bartlett RJ (1993) J Chem Phys 98:7029

    Article  CAS  Google Scholar 

  32. Miertus S, Scrocco E, Tomasi J (1981) J Chem Phys 55:117

    CAS  Google Scholar 

  33. Cancès MT, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032

    Article  Google Scholar 

  34. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) J Chem Phys 21:1087

    Article  CAS  Google Scholar 

  35. Coutinho K, Canuto S (2009) DICE: a monte carlo program for molecular liquid simulation, v. 2.9. University of São Paulo, São Paulo

    Google Scholar 

  36. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon, Oxford

    Google Scholar 

  37. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) In: Pullman B (ed) Intermolecular forces. Reidel, Dordrecht

    Google Scholar 

  38. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) J Am Chem Soc 118:11225

    Article  CAS  Google Scholar 

  39. Georg HC, Coutinho K, Canuto S (2006) Chem Phys Lett 429:119

    Article  CAS  Google Scholar 

  40. Breneman CM, Wiberg KB (1990) J Comp Chem 11:361

    Article  CAS  Google Scholar 

  41. Zwanzig RW (1954) J Chem Phys 22:1420

    Article  CAS  Google Scholar 

  42. Jorgensen WL, Buckner KJ, Boudon S, Tirado-Rives J (1988) J Chem Phys 89:3742

    Article  CAS  Google Scholar 

  43. Georg HC, Coutinho K, Canuto S (2005) Chem Phys Lett 413:16

    Article  CAS  Google Scholar 

  44. Pasalic H, Aquino AJA, Tunega D, Haberhauer G, Gerzabek MH, Georg HC, Moraes TF, Coutinho K, Canuto S, Lischka H (2010) J Comp Chem 31:2046

    CAS  Google Scholar 

  45. Coutinho K, Saavedra N, Canuto S (1999) J Mol Struct (Theochem) 466(1999):69

    Google Scholar 

  46. Estok GK, Sikes JH (1953) J Am Chem Soc 75:2745

    Article  CAS  Google Scholar 

  47. Bentley JB, Everard KB, Marsden RJB, Sutton LE (1949) J Chem Soc 2957. doi:10.1039/JR9490002957

    Google Scholar 

  48. Mecke R, Noack K (1960) Chem Ber 93:210

    Article  CAS  Google Scholar 

  49. Coutinho K, Georg HC, Fonseca TL, Ludwig V, Canuto S (2007) Chem Phys Lett 437:148

    Article  CAS  Google Scholar 

  50. Georg HC, Coutinho K, Canuto S (2007) J Chem Phys 126:34507

    Article  Google Scholar 

  51. Mezei M, Beveridge DL (1981) J Chem Phys 74:622

    Article  CAS  Google Scholar 

  52. Sceats MG, Rice SA (1981) J Chem Phys 72:3236

    Article  Google Scholar 

  53. Barone V, Cossi M, Tomasi J (1997) J Chem Phys 107:3210

    Article  CAS  Google Scholar 

  54. Ho J, Klamt A, Coote ML (2010) J Phys Chem A 114:13442

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaline Coutinho .

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Marco Antonio Chaer Nascimento and published as part of the special collection of articles celebrating his 65th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Damasceno, M.V.A., Cabral, B.J.C., Coutinho, K. (2014). Structure and electronic properties of hydrated mesityl oxide: a sequential quantum mechanics/molecular mechanics approach. In: Ornellas, F., João Ramos, M. (eds) Marco Antonio Chaer Nascimento. Highlights in Theoretical Chemistry, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41163-2_6

Download citation

Publish with us

Policies and ethics