Multi-scale Robust Modelling of Landslide Susceptibility: Regional Rapid Assessment and Catchment Robust Fuzzy Ensemble

  • Claudio Bosco
  • Daniele de Rigo
  • Tom Dijkstra
  • Graham Sander
  • Janusz Wasowski
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 413)


Landslide susceptibility assessment is a fundamental component of effective landslide prevention. One of the main challenges in landslides forecasting is the assessment of spatial distribution of landslide susceptibility. Despite the many different approaches, landslide susceptibility assessment still remains a challenge. A semi-quantitative method is proposed combining heuristic, deterministic and probabilistic approaches for a robust catchment scale assessment. A fuzzy ensemble model has been exploited for aggregating an array of different susceptibility zonation maps. Each susceptibility zonation has been obtained by applying heterogeneous statistical techniques as logistic regression (LR), relative distance similarity (RDS), artificial neural network (ANN) and two different landslide susceptibility techniques based on the infinite slope stability model. The sequence of data-transformation models has been enhanced following the semantic array programming paradigm. The ensemble has been applied to a study area in Italy. This catchment scale methodology may be exploited for analysing the potential impact of landscape disturbances. At regional scale, a qualitative approach is also proposed as a rapid assessment technique – suitable for application in real-time operations such as wildfire emergency management.


Landslide susceptibility Modelling Ensemble Semantic Array Programming 


  1. 1.
    van Westen, C.J., Rengers, N., Terlien, M.T.J., Soeters, R.: Prediction of the occurrence of slope instability phenomena through GIS-based hazard zonation. Geologische Rundschau 86, 404–414 (1997)CrossRefGoogle Scholar
  2. 2.
    Brenning, A.: Spatial prediction models for landslide hazards: review, comparison and evaluation. Nat. Hazards Earth System Sci. 5(6), 853–862 (2005)CrossRefGoogle Scholar
  3. 3.
    Aleotti, P., Chowdhury, R.: Landslide hazard assessment: summary review and new perspectives. Bulletin of Eng. Geology and the Env. 58, 21–44 (1999)CrossRefGoogle Scholar
  4. 4.
    Suzen, M.L., Doyuran, V.: A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environmental Geology 45, 665–679 (2004)CrossRefGoogle Scholar
  5. 5.
    Acharya, G.: Analysing the Interactions between Water-induced Soil Erosion and Shallow Landslides. Phd Thesis. University of Canterbury (2011)Google Scholar
  6. 6.
    Van Westen, C.J.: The modelling of landslide hazards using GIS. Surveys in Geophysics 21, 241–255 (2000)CrossRefGoogle Scholar
  7. 7.
    Van Beek, L.P.H.: Assessment of the Influence of Change in Landslide and Climate on Landslide in Mediterranean Environment. PhD Thesis, Utrecht University, 363p. (2002)Google Scholar
  8. 8.
    Chen, H., Lee, C.F.: A dynamic model for rainfall-induced landslides on natural slopes. Geomorphology 51(4), 269–288 (2003)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Van Westen, C.J.: Geo-information tools for landslide risk assessment an overview of recent developments. In: Proceed. of the 9th Int. Symposium on Landslides, Evaluation and Stabilization, Rio de Janeiro, pp. 39–56 (2004) Google Scholar
  10. 10.
    Van Westen, C.J., Van Asch, T.W.J., Soeters, R.: Landslide hazard and risk zonation; why is it still so difficult. Bulletin of Engineering geology and the Environment 65(2), 167–184 (2006)CrossRefGoogle Scholar
  11. 11.
    Foster, C., Harrison, M., Reeves, H.J.: Standard and methods of hazard assessment for mass-movements in Great Britain. Journal for Torrent and Avalanche Control 166 (2011)Google Scholar
  12. 12.
    Dai, C., Lee, C.F.: Landslide characteristics and slope instability modeling using GIS Lantau Island, Hong Kong. Geomorphology 42, 213–238 (2002)CrossRefGoogle Scholar
  13. 13.
    Dijkstra, T.A., Dixon, N.: Climate change and slope stability in the UK: challenges and approaches. Quarterly Journal of Engineering Geology and Hydrogeology 43(4), 371–385 (2010)CrossRefGoogle Scholar
  14. 14.
    Lee, C.F., Ye, H., Yeung, M.R., Shan, X., Chen, G.: AIGIS-based methodology for natural terrain landslide susceptibility mapping in hong kong. Episodes 24(3), 150–158 (2001)Google Scholar
  15. 15.
    Karsli, F., Atasoy, M., Yalcin, A., Reis, S., Demir, O., Gokceoglu, C.: Effects of land-use changes on landslides in a landslide-prone area (ardesen, rize, NE turkey). Environ. Monit. Assess. 156(1-4), 241–255 (2009)CrossRefGoogle Scholar
  16. 16.
    de Rigo, D., Bosco, C.: Architecture of a Pan-European Framework for Integrated Soil Water Erosion Assessment. In: Hřebíček, J., Schimak, G., Denzer, R. (eds.) ISESS 2011. IFIP AICT, vol. 359, pp. 310–318. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Winter, M.G., Dixon, N., Wasowski, J., Dijkstra, T.A.: Introduction to land-use and climate change impacts on landslides. Quarterly Journal of Engineering Geology and Hydrogeology 43(4), 367–370 (2010)CrossRefGoogle Scholar
  18. 18.
    de Rigo, D.: Behind the horizon of reproducible integrated environmental modelling at European scale: ethics and practice of scientific knowledge freedom. F1000 Research (submitted 2013)Google Scholar
  19. 19.
    de Rigo, D., Rodriguez-Aseretto, D., Bosco, C., Di Leo, M., San-Miguel-Ayanz, J.: An Architecture for Adaptive Robust Modelling of Wildfire Behaviour under Deep Uncertainty. In: Hřebíček, J., Schimak, G., Kubásek, M., Rizzoli, A. (eds.) ISESS 2013. IFIP AICT, vol. 413, pp. 367–380. Springer, Heidelberg (2013)Google Scholar
  20. 20.
    Di Leo, M., de Rigo, D., Rodriguez-Aseretto, D., Bosco, C., Petroliagkis, T., Camia, A., San-Miguel-Ayanz, J.: Dynamic Data Driven Ensemble for Wildfire Behaviour Assessment: A Case Study. In: Hřebíček, J., Schimak, G., Kubásek, M., Rizzoli, A. (eds.) ISESS 2013, vol. 413, pp. 11–22. Springer, Heidelberg (2013)Google Scholar
  21. 21.
    Iovine, G., Parise, M., Crescenzi, E.: Analisi della franosita nel settore centrale dell Appennino Dauno. Mem. soc. Geol. Ita. 51, 633–641 (1996)Google Scholar
  22. 22.
    Magliulo, P., Di Lisio, A., Russo, F., Zelano, A.: Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: A case study in southernItaly. Natural Hazards 47(3), 411–435 (2008)CrossRefGoogle Scholar
  23. 23.
    Wasowski, J., Lamanna, C., Gigante, G., Casarano, D.: High resolution satellite imagery analysis for inferring surface-subsurface water relationship in unstable slopes. Remote sensing of Environment 124, 135–148 (2012)CrossRefGoogle Scholar
  24. 24.
    Wasowski, J., Casarano, D., Lamanna, C.: Is the current landslide activity in the Daunia region (Italy) controlled by climate or land use change. In: Proceedings of the International Conference on Landslides and Climate Change, Ventor, Isle of Wight, UK, vol. 124, pp. 41–49. Taylor and Francis, Balkema, London, Rotterdam (2007)Google Scholar
  25. 25.
    Mossa, S., Capolongo, D., Pennetta, L., Wasowski, J.: A GIS-based assessment of landsliding in the Daunia Apennines, southern Italy. In: Graniczny, M., Czarnogorska, M., et al. (eds.) Proceedings of the International Conference Mass Movement Hazard in Various Environments, Krakow, Poland, vol. 20, pp. 86–91. Polish Geological Institute, Warsaw (2005)Google Scholar
  26. 26.
    Wasowski, J., Lamanna, C., Casarano, D.: Influence of land-use change and precipitation patterns on landslide activity in the Daunia Appennines. Quarterly Journal of Engineering Geology and Hydrogeology 43, 387–401 (2010)CrossRefGoogle Scholar
  27. 27.
    Bosco, C., de Rigo, D., Dewitte, O., Poesen, J., Panagos, P.: Modelling Soil Erosion at European Scale. Towards Harmonization and Reproducibility (in prep.)Google Scholar
  28. 28.
    de Rigo, D., Guariso, G.: Rewarding Open Science: A Collaborative Review System for Semantically-Enhanced Free Software and Environmental Data Modelling. IFIP AICT (submitted)Google Scholar
  29. 29.
    de Rigo, D., Barredo, J.I., Busetto, L., Caudullo, G., San-Miguel-Ayanz, J.: Continental-Scale Living Forest Biomass and Carbon Stock: a Robust Fuzzy Ensemble of IPCC Tier 1 Maps for Europe. In: Hřebíček, J., Schimak, G., Kubásek, M., Rizzoli, A. (eds.) ISESS 2013. IFIP AICT, vol. 413, pp. 271–284. Springer, Heidelberg (2013)Google Scholar
  30. 30.
    de Rigo, D.: Software Uncertainty in Integrated Environmental Modelling: the role of Semantics and Open Science. Geophys. Res. Abstr. 15, 13292+ (2013)Google Scholar
  31. 31.
    de Rigo, D., Corti, P., Caudullo, G., McInerney, D., Di Leo, M., San Miguel-Ayanz, J.: Toward Open Science at the European Scale: Geospatial Semantic Array Programming for Integrated Environmental Modelling. Geophys. Res. Abstr. 15, 13245+ (2013)Google Scholar
  32. 32.
    de Rigo, D.: Semantic array programming for environmental modelling: Application of the mastrave library. In: International Environmental Modelling and Software Society (iEMSs) 2012 International Congress on Environmental Modelling and Software. Managing Resources of a Limited Planet: Pathways and Visions under Uncertainty, Sixth Biennial Meeting, pp. 1167–1176 (2012)Google Scholar
  33. 33.
    de Rigo, D.: Semantic Array Programming with Mastrave - Introduction to Semantic Computational Modelling. The Mastrave Project (2012)Google Scholar
  34. 34.
    Pack, R.T., Tarboton, D.G., Goodwin, C.N.: The SINMAP Approach to Terrain Stability Mapping. In: 8th Congress of the International Association of Engineering Geology, Vancouver, British Columbia, Canada (1998)Google Scholar
  35. 35.
    Pack, R.T., Tarboton, D.G., Goodwin, C.N., Prasad, A.: SINMAP 2. A Stability Index Approach to Terrain Stability Hazard Mapping, technical description and users guide for version 2.0. Utah State University (2005)Google Scholar
  36. 36.
    Cox, D.R.: The Regression Analysis of Binary Sequences. Journal of the Royal Statistical Society. Series B (Methodological) 20, 215–242 (1958)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Yilmaz, I.: Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat Turkey). Comput. Geosci. 35(6), 1125–1138 (2009)CrossRefGoogle Scholar
  38. 38.
    Garrett, J.: Where and why artificial neural networks are applicable in civil engineering. J. Comput. Civil Eng. 8, 129–130 (1994)CrossRefGoogle Scholar
  39. 39.
    Pradhan, B., Lee, S.: Landslide risk analysis using artificial neural network model focusing on different training sites. International Journal of Physicical Sciences 4(1), 1–15 (2009)Google Scholar
  40. 40.
    Lee, S., Ryu, J.H., Kim, I.S.: Landslide susceptibility analysis and its verifica tion using likelihood ratio, logistic regression, and artificial neural network models: case study of Youngin, Korea. Landslide 4, 327–338 (2007)CrossRefGoogle Scholar
  41. 41.
    Rossi, M., Guzzetti, F., Reichenbach, P., Mondini, A.C., Peruccacci, S.: Optimal landslide susceptibility zonation based on multiple forecast. Geomorphology 114, 129–142 (2010)CrossRefGoogle Scholar
  42. 42.
    Beven, K.J., Kirkby, M.J.: A physically based variable contributing area model of basin hydrology. Hydrological Sciences Bulletin 24, 43–69 (1979)CrossRefGoogle Scholar
  43. 43.
    Witt, A.C.: Using a GIS (Geographic Information System) to Model Slope Instability and Debris Flow Hazards in the French Broad River Watershed, p. 165. Carolina State University, North Carolina (2005)Google Scholar
  44. 44.
    Morgan, R.P.C., Quinton, J.N., Smith, R.E., Govers, G., Poesen, J.W.A., et al.: The European Soil Erosion Model (EUROSEM): Documentation and User Guide. Silsoe College, Cranfield University (1998)Google Scholar
  45. 45.
    Horn, R., Fleige, H.: A method for assessing the impact of load on mechanical stability and on physical properties of soils. Soil. Till. Res. 73(1-2), 89–99 (2003)CrossRefGoogle Scholar
  46. 46.
    Guzzetti, F., Cardinali, M., Reichenbach, P., Carrara, A.: Comparing landslide maps: a case study in the upper Tiber River Basin, central Italy. Environmental Management 25, 247–363 (2000)CrossRefGoogle Scholar
  47. 47.
    Guzzetti, F.: Landslide Hazard and Risk Assessment. Ph.D. Thesis, Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität, University of Bonn, Germany, p. 389 (2006)Google Scholar
  48. 48.
    Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., Galli, M.: Estimating the quality of landslide susceptibility models. Geomorphology 81, 166–184 (2006)CrossRefGoogle Scholar
  49. 49.
    Collins, M., Knight, S.: Ensembles and probabilities: a new era in the prediction of climate change. Philosophic. Transact. of the Royal Soc. A, 1471–2962 (2007)Google Scholar
  50. 50.
    Bengtsson, J., Nilsson, S.G., Franc, A., Menozzi, P.: Biodiversity, disturbances, ecosystem function and management of European forests. Forest Ecology and Management 132(1), 39–50 (2000)CrossRefGoogle Scholar
  51. 51.
    Seidl, R., Fernandes, P.M., Fonseca, T.F., Gillet, F., Jnsson, A.M., Merganiov, K., et al.: Modelling natural disturbances in forest ecosystems: a review. Ecological Modelling 222(4), 903–924 (2011)CrossRefGoogle Scholar
  52. 52.
    Rodriguez-Aseretto, D., de Rigo, D., Di Leo, M., Cortes, A., San-Miguel-Ayanz, J.: A data-driven model for large wildfire behaviour prediction in Europe. Procedia Computer Science 18, 1861–1870 (2013)CrossRefGoogle Scholar
  53. 53.
    Shakesby, R.A., Doerr, S.H.: Wildfire as a hydrological and geomorphological agent. Earth Sci. Rev. 74, 269–307 (2006)CrossRefGoogle Scholar
  54. 54.
    Cannon, S.H., Gartner, J.E.: Wildfire-related debris flow from a hazards perspective. In: Debris-flow Hazards and Related Phenomena, pp. 363–385. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  55. 55.
    Swanston, D.N.: Principal soil movement processes influenced by roadbuilding, logging and fire. In: Proceedings of a Symposium: Forest Land Uses and Stream Environment, pp. 29–40. Oregon State University, Corvallis (1971)Google Scholar
  56. 56.
    Swanson, F.J.: Fire and Geomorphic Processes. In: Gen. Tech. Rep. USDA For. Serv. WO-26. pp. 401–420, Washington DC (1981)Google Scholar
  57. 57.
    Neary, D.G., Klopatek, C.C., DeBano, L.F., Ffolliott, P.F.: Fire effects on belowground sustainability: A review and synthesis. For. Ecol. Manage. 122, 51–71 (1999)CrossRefGoogle Scholar
  58. 58.
    Blesius, L., Weirich, F.: The use of high-resolution satellite imagery for deriving geotechnical parameters applied to landslide susceptibility. In: ISPRS Hannover Workshop (2009)Google Scholar
  59. 59.
    Humphreys, F.R., Craig, F.G.: Effects of fire on soil chemical,structural and hydrological properties. In: Gill, A.M., et al. (eds.) Fire and the Australian Biota, Canberra. Aust. Acad. Sci, ch. 8, pp. 177–200 (1981)Google Scholar
  60. 60.
    de Rigo, D. and Bosco, C.: A multi model robust ensembling architecture for estimating landslide susceptibility. Free Software and Semantic Array Programming Research (in prep., 2013)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Claudio Bosco
    • 1
  • Daniele de Rigo
    • 2
    • 3
  • Tom Dijkstra
    • 4
  • Graham Sander
    • 1
  • Janusz Wasowski
    • 5
  1. 1.Department of Civil and Building EngineeringLoughborough UniversityLoughboroughUnited Kingdom
  2. 2.Joint Research Centre, Institute for Environment and SustainabilityEuropean CommissionIspraItaly
  3. 3.Dipartimento di Elettronica e InformazionePolitecnico di MilanoMilanoItaly
  4. 4.Environmental Science CentreBritish Geological SurveyKeyworthUnited Kingdom
  5. 5.National Research Council (CNR)BariItaly

Personalised recommendations