Skip to main content

AV Shunts

  • Chapter
  • First Online:

Abstract

In this book, AV shunt is used for a prosthetic graft access. Pathophysiology, hemodynamics, recommendations and detailed practical hints for shunt surgery as well as different anastomotic variants and sites for looped and straight grafts, facing anatomical variations, and the management of complications are described here.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Affeld K, Kertscher U (2011) Vorlesungsskript “Strömungsmechanik in der Medizin – Biofluidmechanik”. www.charite.de/biofluidmechanik/downloads/SkriptBiofluidmechanik1.pdf

  • Akoh J (2009) Prosthetic arteriovenous grafts for hemodialysis. J Vasc Access 10:137–147

    PubMed  Google Scholar 

  • Asif A, Gadalean FN, Merrill D, Cherla G, Cipleu CD, Epstein DL, Roth D (2005) Inflow stenosis in arteriovenous fistulas and grafts: a multicenter, prospective study. Kidney Int 67:1986–1992

    Article  PubMed  Google Scholar 

  • Bassiouny HS, White S, Glagov S, Choi E, Giddens DP, Zarins CK (1992) Anastomotic intimal hyperplasia: mechanical injury or flow induced. J Vasc Surg 15:708–717

    Article  CAS  PubMed  Google Scholar 

  • Beradinelli L (2006) Grafts and graft materials as vascular substitutes for haemodialysis access construction. Eur J Vasc Endovasc Surg 32:203–211

    Article  Google Scholar 

  • Berard X, Baste JC, Sassoust G, Du Bourguet L, Combe C, De Precigout V, Midy D (2003) Retrospective study of the one-year patency of a cuffed polytetrafluoroethylene Venaflo-type graft placed for venous hemodialysis access. J Mal Vasc 28:73–78

    CAS  PubMed  Google Scholar 

  • Bittl JA (2010) Catheter interventions for hemodialysis fistulas and grafts. JACC Cardiovasc Interv 3:1–11

    Article  PubMed  Google Scholar 

  • Bozof R, Kats M, Barker J, Allon M (2008) Time to symptomatic vascular stenosis at different locations in patients with arteriovenous grafts. Semin Dial 21:285–288

    Article  PubMed  Google Scholar 

  • Chang TI, Paik J, Greene T, Desai M, Bech F, Cheung AK, Chertow GM (2011) Intradialytic hypotension and vascular access thrombosis. J Am Soc Nephrol 22:1536–1543

    Article  Google Scholar 

  • Choudhury D, Lee J, Elivera HS, Ball D, Roberts AB, Ahmed Z (1995) Correlation of venography, venous pressure, and hemoaccess function. Am J Kidney Dis 25:269–275

    Article  CAS  PubMed  Google Scholar 

  • Cross MM (1965) Rheology of non-Newtonian fluids: a new equation for pseudoplastic systems. J Coll Sci 20:417–437

    Article  CAS  Google Scholar 

  • Cull DL, Carsten CG 3rd, Kalbaugh CA, York JW, Campbell TR, Cass AL, Taylor SM (2008) The reverse J arteriovenous graft configuration for hemodialysis access: rationale, technique, and outcomes. Am Surg 74:620–624

    PubMed  Google Scholar 

  • Davies MG, Huynh TT, Hagen PO (2000) Pathophysiology of access failure. In: Colon PJ, Schwab SJ, Nicholson ML (eds) Hemodialysis vascular access: practice and problems. Oxford University Press, Oxford/New York, pp S 23–S 51

    Google Scholar 

  • Escobar FS, Schwartz SA, Aboulijoud M, Douzdjian V, Escobar MD, Besarab A, Elliott JP (1999) A preliminary study comparing a new “hooded” vs. conventional ePTFE graft in hemodialysis patients. In: Henry ML (ed) Vascular access for hemodialysis VI. W.L. Gore & Associates, Inc. and Precept Press, Chicago, pp S 205–S 211

    Google Scholar 

  • Fillinger MF, Reinitz ER, Schwartz RA, Resetarits DE, Paskanik AM, Bruch D, Bredenberg CE (1990) Graft geometry and venous intimal-medial hyperplasia in arteriovenous loop grafts. J Vasc Surg 11:556–566

    Article  CAS  PubMed  Google Scholar 

  • Flarup S, Haimeri H (2003) Arteriovenous PTFE dialysis access in the lower extremity: a new approach. Ann Vasc Surg 17:581–584

    Article  PubMed  Google Scholar 

  • Fung YC, Liu SQ (1993) Elementary mechanics of the endothelium of blood vessels. J Biomech Eng 115:1–12

    Article  CAS  PubMed  Google Scholar 

  • Geenen IL et al (2010) Prosthetic lower extremity hemodialysis access grafts have satisfactory patency despite a high incidence of infection. J Vasc Surg 52(6):1546–1550

    Article  PubMed  Google Scholar 

  • Gordon IL (1996) Physiology of the arteriovenous fistula. In: Wilson SE (ed) Vascular access – principles and practise. Mosby-Year-Book Inc, St. Louis, pp S 335–S 345

    Google Scholar 

  • Haruguchi H, Teraoka S (2003) Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review. J Artif Organs 6:227–235

    Article  PubMed  Google Scholar 

  • Heethaar RM (1993) Atherosclerosis and blood flow. In: Strackee J, Westerhof N (eds) The physics of heart and circulation. Institute of Physics Publishing, Bristol/Philadelphia, pp S 321–S 334

    Google Scholar 

  • Heise M, Husmann I, Grüneberg AK, Knobel A, Kirschner P, Heidenhain C (2011) Comparison of straight and Venaflo-type cuffed arteriovenous ePTFE grafts in an animal study. J Vasc Surg 53:1661–1667

    Article  PubMed  Google Scholar 

  • Hofstra L, Bergmans DC, Leunissen KM, Hoeks AP, Kitslaar PJ, Daemen MJ, Tordoir JH (1995) Anastomotic intimal hyperplasia in prosthetic arteriovenous fistulas for hemodialysis is associated with initial high flow velocity and not with mismatch in elastic properties. J Am Soc Nephrol 6:1625–1633

    CAS  PubMed  Google Scholar 

  • Hofstra L, Bergmans DCJJ, Leunissen KML, Hoeks APG, Kitslaar PJEHM, Tordoir JH (1996) Prosthetic arteriovenous fistulas and venous anastomotic stenosis: influence of a high flow velocity on the development of intimal hyperplasia. Blood Purif 14:345–349

    Article  CAS  PubMed  Google Scholar 

  • Huber TS, Carter JW, Carter RL, Seeger JM (2003) Patency of autogenous and polytetrafluoroethylene upper extremity arteriovenous hemodialysis accesses: a systematic review. J Vasc Surg 38:1005–1011

    Article  PubMed  Google Scholar 

  • Huhle A (2002) Die Flussdynamik in der arteriellen Anastomose arterio-venöser Interponate in Abhängigkeit von der Anastomosenmetrik und der arteriellen Speisung. Dissertation, Medizinischen Fakultät Charité der Humboldt-Universität zu Berlin

    Google Scholar 

  • Huhle A, Krüger U, Scholz H (2002) Die Hämodynamik in der arteriellen Anastomose arterio-venöser (av) Interponate in Abhängigkeit von der Anastomosenmetrik (eine in vitro Untersuchung). Zentralbl Chir 127:374–375

    Google Scholar 

  • Jean-Baptiste E, Hassen-Khodja R, Haudebourg P, Declemy S, Batt M, Bouillanne PJ (2008) Axillary loop grafts for hemodialysis access: midterm results from a single-center study. J Vasc Surg 47:138–143

    Article  PubMed  Google Scholar 

  • Kan CD, Wu HY, Wang JN, Wu JM, Yang YJ (2009) Improved pulmonary artery geometry after a Norwood procedure by using a Venaflo II graft as an RV-MPA conduit. Ann Thorac Surg 88:690–691

    Article  PubMed  Google Scholar 

  • Kannan RY, Salacinski HJ, Butler PE, Hamilton G, Seifalian AM (2007) Current status of prosthetic bypass grafts: a review. J Biomed Mater Res B Appl Biomater 74:570–581

    Google Scholar 

  • Kao CL, Chang JP (2004) The reverse upper arm curved graft with ringed PTFE graft as an alternative vascular access procedure for hemodialysis. J Cardiovasc Surg (Torino) 45:55–57

    Google Scholar 

  • Kleinstreuer C (2006) Biofluid dynamics: principles and selected applications. Taylor Francis Inc, Boca Raton

    Book  Google Scholar 

  • Ko PJ, Liu YH, Hung YN, Hsieh HC (2009) Patency rates of cuffed and noncuffed extended polytetrafluoroethylene grafts in dialysis access: a prospective, randomized study. World J Surg 33:846–851

    Article  PubMed  Google Scholar 

  • Kolakowski S Jr, Dougherty MJ, Calligaro KD (2003) Salvaging prosthetic dialysis fistulas with stents: forearm versus upper arm grafts. J Vasc Surg 38:719–723

    Article  PubMed  Google Scholar 

  • Krueger U, Heise M, Huhle A (2001) Effects of arterial and venous anastomotic design on hemodynamics in arteriovenous prosthetic grafts. In: Henry ML (ed) Vascular access for hemodialysis VII. W.L. Gore & Associates, Inc., and Precept Press, Chicago, pp S 177–S 191

    Google Scholar 

  • Krueger U, Zanow J, Scholz H (2002) Computational fluid dynamics and vascular access. Artif Organs 26:571–575

    Article  PubMed  Google Scholar 

  • Krueger U, Huhle A, Krys K, Scholz H (2004) Effect of tapered grafts on hemodynamics and flow rate in dialysis access grafts. Artif Organs 28:623–628

    Article  PubMed  Google Scholar 

  • Krüger U, Scholz H (2008) Der Einstromradius arteriovenöser Schlingen. Gefäßchirurgie 13:45–50

    Article  Google Scholar 

  • Krueger U, Zanow J, Scholz H (2009) An attempt at explanation for etiology of stenotic lesions proximal of the venous anastomosis at arteriovenous vascular grafts. In: Proceedings of World Congress on Medical Physics and Biomedical Engineering, Munich, 7–12 Sept 2009

    Google Scholar 

  • Lau KK, Jones DP, Gaber O, Nezatkatgoo N (2007) Use of a “composite” vascular access graft in a young child on hemodialysis. Hemodial Int 11:190–192

    Article  PubMed  Google Scholar 

  • Lemson MS, Tordoir JH, Daemen MJ, Kitslaar PJ (2000) Intimal hyperplasia in vascular grafts. Eur J Vasc Endovasc Surg 19:336–350

    Article  CAS  PubMed  Google Scholar 

  • Liu YH, Hung YN, Hsieh HC, Ko PJ (2006) Impact of cuffed, expanded polytetrafluoroethylene dialysis grafts on graft outlet stenosis. World J Surg 30:2290–2294

    Article  PubMed  Google Scholar 

  • Liepsch D (1989) Pulsierende Strömung von nicht-Newtonschen Fluiden in starren und elastischen Modellen der menschlichen Arterien. Hamostaseologie 9:82–107

    Google Scholar 

  • Liepsch D (1998) Biofluid mechanics. Biomed Tech 43:94–99

    Article  CAS  Google Scholar 

  • Longest PW, Kleinstreuer C (2000) Computational haemodynamics analysis and comparison study of arterio-venous grafts. J Med Eng Technol 24:102–110

    Article  CAS  PubMed  Google Scholar 

  • Matsuda H, Miyazaki M, Oka Y, Nakao A, Choda Y, Kokumai Y, Kunitomo K, Tanaka N (2003) A polyurethane vascular access graft and a hybrid polytetrafluoroethylene graft as an arteriovenous fistula for hemodialysis: comparison with an expanded polytetrafluoroethylene graft. Artif Organs 27:722–727

    Article  PubMed  Google Scholar 

  • Modarai B, Dasgupta P, Taylor J, Koffman G, Khan MS (2005) Follow-up of polytetrafluoroethylene arteriovenous fistulae for haemodialysis. Int J Clin Pract 59:1005–1007

    Article  CAS  PubMed  Google Scholar 

  • Munson BR, Young DF, Okiishi TH (1994) Fundamentals of fluid mechanics. Wiley, New York

    Google Scholar 

  • Niyyar VD (2008) Anterior chest wall arteriovenous grafts: an underutilized form of hemodialysis access. Semin Dial 21:578–580

    Article  PubMed  Google Scholar 

  • Noack L, Tamaschke C (1988) Arteriovenous subclavio-subclavian Collier shunt - a further possibility in chronic hemodialysis. Zentralbl Chir 113:1359–1361

    CAS  PubMed  Google Scholar 

  • Nyberg SL et al (2001) Prelimary experience with a cuffed ePTFE graft for hemodialysis vascular access. ASAIO J 47:333–337

    Article  CAS  PubMed  Google Scholar 

  • Ojha MJ, Cobbold RS, Johnston KW (1995) Flow and shear stress patterns at proximal and distal ends of bypass grafts: Implications for the development of intimal hyperplasia. In: Callow AD, Ernst EB (eds) Vascular surgery - theory and practice. Prentice-Hall, Appleton & Lange, Stamford, pp 1231–1236

    Google Scholar 

  • Opitz H, Pfeiffer C (1984) Das kardiovaskuläre System. VEB Georg Thieme, Leipzig

    Google Scholar 

  • Petzold K (2001) Experimentelle und klinische Untersuchungen zur Beeinflussung der subendothelialen Intimahyperplasie im Bereich der venösen Anastomose gerader arteriovenöser Interponate am Oberarm. Dissertation, Medizinischen Fakultät Charité der Humboldt-Universität zu Berlin

    Google Scholar 

  • Ravari H, Kazemzade GH, Modaghegh MH, Khashayar P (2010) Patency rate and complications of polytetrafluoroethylene grafts compared with polyurethane grafts for hemodialyis access. Ups J Med Sci 115:245–248

    Article  PubMed Central  PubMed  Google Scholar 

  • Reddemann P (2010) Der Einfluss der Lokalisation der arteriellen Anastomose und des Flussminutenvolumens von arterio-venösen Gefäßzugängen auf den peripheren Perfusionsdruck bei in vitro Untersuchungen am Kreislaufmodell. Dissertation, 2010, Medizinische Fakultät Charité – Universitätsmedizin Berlin

    Google Scholar 

  • Richman P, Wilson SE (1991) Bridge grafts for angioaccess. In: Ernst CB, Stanley JC (eds) Current therapy in vascular surgery. B.C.Decker Inc, Philadelphia/Toronto, pp S 927–S 932

    Google Scholar 

  • Rotmans JI, Pasterkamp G, Verhagen HJ, Pattynama PM, Blankestijn PJ, Stroes ES (2005) Hemodialysis access graft failure: time to revisit an unmet clinical need? J Nephrol 18(1):9–20

    PubMed  Google Scholar 

  • Salam TA, Lumdsden AB, Suggs WD, Ku DN (1996) Low shear stress promotes intimal hyperplasia thickening. J Vasc Invest 2:12–22

    Google Scholar 

  • Salimi J, Zafaghandi MR (2008) The patency rate and complication of polytetrafluoroethylene vascular access grafts in hemodialysis patients: a prospective study from Iran. Saudi J Kidney Dis Transpl 19:280–285

    PubMed  Google Scholar 

  • Santoro TD, Cambria RA (1997) PTFE shunts for hemodialysis access: progressive choice of configuration. Semin Vasc Surg 10:166–174

    CAS  PubMed  Google Scholar 

  • Scher LA, Katzman HE (2004) Alternative graft materials for haemodialysis access. Semin Vasc Surg 17:19–24

    Article  PubMed  Google Scholar 

  • Schild AF (2008) Arteriovenous fistulae vs. arteriovenous grafts: a retrospective review of 1,700 consecutive vascular access cases. J Vasc Access 9:231–235

    CAS  PubMed  Google Scholar 

  • Schild AF, Schuman ES, Noicely K, Kaufman J, Gillaspie E, Fuller J, Collier P, Ronfeld A, Nair R (2011) Early cannulation prosthetic graft (FlixeneTM) for arteriovenous access. J Vasc Access 12:248–253

    Article  PubMed  Google Scholar 

  • Schmidt RF, Thews G (2000) Physiologie des Menschen. Springer, Berlin

    Book  Google Scholar 

  • Scholz H, Naundorf M, Matthes G, Precht K, Röseler R, Schulze BD, Schoepke W (1988) Untersuchungen zum Einsatz formaldehydkonservierter, innenflächensilikonierter und formfixierter boviner Gefäße als Gefäßtransplantate. Zbl Chir 113:441

    CAS  PubMed  Google Scholar 

  • Scholz H, Zanow J, Petzold M, Petzold K (1999a) Desparate access. Prepectorial bridge grafts. Dialyse J 16:266

    Google Scholar 

  • Scholz H, Zanow J, Petzold K, Krueger U, Settmacher U, Petzold M (1999b) Five years experience with arteriovenous patch prosthesis (AVP) as access for hemodialysis. In: Henry ML (ed) Vascular access for hemodialysis VI. W.L. Gore & Associates, Inc. and Precept Press, Chicago, pp 241–254

    Google Scholar 

  • Scholz H, Simba A, Bürger K, Settmacher U (1995) Perioperative Antibiotikaprophylaxe in der Dialyseshuntchirurgie. Int J Exp Clin Chemother 7:25–35

    Google Scholar 

  • Scholz H, Mauendor M, Precht K, Schulze BD, Rössler E, Buder HW, Matthes G, Scoepke W (1990) Subclavio-jugularer av-shunt (Colliershunt) für die Hämodialyse. Angio 1990(12):151–154

    Google Scholar 

  • Scott JD, Cull DL, Kalbaugh CA, Carsten CG, Blackhurst D, Taylor SM, Snyder BA, York JW, Langan EM (2006) The mid-thigh loop arteriovenous graft: patient selction, technique, and results. Am Surg 72:825–828

    PubMed  Google Scholar 

  • Shu MC, Hwang NH (1991) Haemodynamics of angioaccess venous anastomoses. J Biomed Eng 13:103–112

    Article  CAS  PubMed  Google Scholar 

  • Sivanesan S, How TV, Black RA, Bakran A (1999) Flow patterns in the radiocephalic arteriovenous fistula: an in vitro study. J Biomech 32:915–925

    Article  CAS  PubMed  Google Scholar 

  • Slayden GC, Spergel L, Jennings WC (2008) Secondary arteriovenous fistulas: converting prosthetic AV grafts to autogenous dialysis access. Semin Dial 21:474–482

    Article  PubMed  Google Scholar 

  • Sorom AJ et al (2002) Prospective, randomized evaluation of a cuffed expanded polytetrafluoroethylene graft for hemodialysis vascular access. Surgery 132:135–140

    Article  PubMed  Google Scholar 

  • Sottiurai VS (1990) Biogenesis and etiology of distal anastomotic intimal hyperplasia. Int Angiol 9:59–69

    CAS  PubMed  Google Scholar 

  • Staalsen NH, Ulrich M, Winther J, Pedersen EM, How T, Nygaard H (1995) The anastomosis angle does change the flow fields at vascular end-to-side anastomoses in vivo. J Vasc Surg 21:460–471

    Article  CAS  PubMed  Google Scholar 

  • Staramos DN, Lazarides MK, Tzilalis VD, Ekonomou CS, Simopoulos CE, Dayantas JN (2000) Patency of autologous and prosthetic arteriovenous fistulas in elderly patients. Eur J Surg 166:777–781

    Article  CAS  PubMed  Google Scholar 

  • Thubrikar MJ (2007) Vascular mechanics and pathology. Springer Science + Business Media, LLC, New York

    Book  Google Scholar 

  • Tordoir JH (1999) Hemodynamic causes for chronic access failure. Dialyse J Heft 66:230–231

    Google Scholar 

  • Tsoulfas G, Hertl M, Ko DSC, Elias N, Kawai T (2008) Long-term outcome of cuffed expanded PTFE graft for hemodialysis vascular access. Vascular Access XI Symposium, Orlando

    Google Scholar 

  • Vega D, Polo JR, Polo J, López Baena JA, Pacheco D, García-Pajares R (2001) Brachial-jugular expanded PTFE grafts for dialysis. Ann Vasc Surg 15:553–556

    Article  CAS  PubMed  Google Scholar 

  • Wijeyartne SM, Kannangara L (2011) Safety and efficacy of electrospun polycarbonate-urethane vascular graft for early hemodialysis access: first clinical results in man. J Vasc Access 12:28–35

    Google Scholar 

  • Zarins CK, Bassionuny HS, Glagov S (1996) Intimal hyperplasia. In: Haimovici H (ed) Haimovici’s vascular surgery. Blackwell Science, Cambridge, MA, pp S 678–S 687

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg New York

About this chapter

Cite this chapter

Scholz, H. (2015). AV Shunts. In: Arteriovenous Access Surgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41139-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41139-7_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41138-0

  • Online ISBN: 978-3-642-41139-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics