Skip to main content

Efficient Learning of Sparse Ranking Functions

  • Chapter
  • First Online:
Empirical Inference

Abstract

Algorithms for learning to rank can be inefficient when they employ risk functions that use structural information. We describe and analyze a learning algorithm that efficiently learns a ranking function using a domination loss. This loss is designed for problems in which we need to rank a small number of positive examples over a vast number of negative examples. In that context, we propose an efficient coordinate descent approach that scales linearly with the number of examples. We then present an extension that incorporates regularization, thus extending Vapnik’s notion of regularized empirical risk minimization to ranking learning. We also discuss an extension to the case of multi-value feedback. Experiments performed on several benchmark datasets and large-scale Google internal datasets demonstrate the effectiveness of the learning algorithm in constructing compact models while retaining the empirical performance accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F., Li, H.: Learning to rank: from pairwise approach to listwise approach. In: ICML ’07: Proceedings of the 24th International Conference on Machine Learning, Corvalis, pp. 129–136 (2007)

    Google Scholar 

  2. Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to order things. J. Artif. Intell. Res. 10, 243–270 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Dekel, O., Manning, C., Singer, Y.: Log-Linear Models for Label Ranking. Advances in Neural Information Processing Systems, vol. 14, Vancouver. MIT Press, Cambridge (2004)

    Google Scholar 

  4. Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for combining preferences. J. Mach. Learn. Res. 4, 933–969 (2003)

    MathSciNet  Google Scholar 

  5. Grangier, D., Bengio, S.: A discriminative kernel-based model to rank images from text queries. IEEE Trans. Pattern Anal. Mach. Intell. 30(8), 1371–1384 (2008)

    Article  Google Scholar 

  6. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD), Edmonton (2002)

    Google Scholar 

  7. Joachims, T.: A support vector method for multivariate performance measures. In: Proceedings of the International Conference on Machine Learning (ICML), Bonn (2005)

    Google Scholar 

  8. Luo1, Z., Tseng, P.: On the convergence of the coordinate descent method for convex differentiable minimization. J. Optim. Theory Appl. 72(1), 7–35 (1992)

    Google Scholar 

  9. Roweis, S.T., Salakhutdinov, R.: Adaptive overrelaxed bound optimization methods. In: Proceedings of the International Conference on Machine Learning (ICML), Washington, DC, pp. 664–671 (2003)

    Google Scholar 

  10. Salton, G.: Automatic Text Processing: The Transformation, Analysis and Retrieval of Information by Computer. Addison-Wesley, Boston (1989)

    Google Scholar 

  11. Singhal, A., Buckley, C., Mitra, M.: Pivoted document length normalization. In: Research and Development in Information Retrieval, Zurich, pp. 21–29 (1996)

    Google Scholar 

  12. Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable minimization. Math. Program. B 117, 387–423 (2007)

    Article  MathSciNet  Google Scholar 

  13. Vapnik, V.N.: Estimation of Dependences Based on Empirical Data. Springer, New York (1982)

    MATH  Google Scholar 

  14. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  15. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  16. Xu, J., Li, H.: Adarank: a boosting algorithm for information retrieval. In: SIGIR ’07: Proceedings of the 30th Annual international ACM SIGIR Conference on Research and Development in Information Retrieval, Amsterdam, pp. 391–398 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Stevens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stevens, M., Bengio, S., Singer, Y. (2013). Efficient Learning of Sparse Ranking Functions. In: Schölkopf, B., Luo, Z., Vovk, V. (eds) Empirical Inference. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41136-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41136-6_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41135-9

  • Online ISBN: 978-3-642-41136-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics