Skip to main content

Space Robotics

  • Chapter
  • First Online:
The International Handbook of Space Technology

Part of the book series: Springer Praxis Books ((ASTROENG))

Abstract

This chapter discusses robotics technology for space missions. First, a general definition of a robot and an overview of the historical development of space robots are provided. Then technical details of orbital space robots, planetary robots, and telerobotics are given in the subsequent sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A robotic maintenance mission of the Hubble Space Telescope was seriously studied after the Space Shuttle Columbia accident (STS-107), but it was finally conducted as a crewed mission by STS-125.

  2. 2.

    Five arms were built in total but one was destroyed in the Challenger accident in 1986.

  3. 3.

    Radioisotope thermoelectric generators (RTG) can solve these limitations for the solar array panels.

  4. 4.

    Electrical power is described in Chap. 10, thermal systems in Chap. 13, and telecommunications in Chap. 14.

  5. 5.

    The average velocity of an MER was about 0.01 m/s. The Mars Science Laboratory (MSL) Curiosity was designed to travel up to approximately 200 m per day [64].

  6. 6.

    The term terramechanics is coined from ‘terrain’ and ‘mechanics’. Soil mechanics is the study of the interaction of structures in various soils.

  7. 7.

    One assumption in Bekker’s pressure-sinkage model is that the contact point of the wheel on deformable soil (circumferential section) is a series of consecutive flat plates.

  8. 8.

    Bekker noted this issue: “Predictions for wheels smaller than 20 inches in diameter become less accurate as wheel diameter decreases, because the sharp curvature of the loading area was neither considered in its entirety nor is it reflected in bevameter tests” [66].

  9. 9.

    These assumptions provide an inaccurate prediction for vehicles with wheel diameters less than approximately 50 cm and a normal loading of less than approximately 45 N [85].

  10. 10.

    The Mars Reconnaissance Orbiter launched by NASA achieved 0.3 m resolution with a high-resolution imaging science experiment (HiRISE) camera.

  11. 11.

    A high computational burden is the reason for such a short usage of the visual odometry.

  12. 12.

    The latency is a summation of the propagation time of the radio wave and the delays of signal processing in the computers and communications nodes. For example, in case of the ISS at 400 km altitude, the direct round-trip radio-propagation delay is just 0.003 s. But if the communication is linked via a geostationary satellite at 36,000 km altitude, the round trip delay increases to 0.5 s. The ETS-VII, which was a low-Earth orbit satellite at about 550 km altitude, utilized the round-trip of two different geostationary satellites and, with cumulative delays in the transmission nodes, the total latency was 5–6 s in practice. Between the Earth and the Moon, the round-trip delay due to just the distance is 2.5 s. For the Mars, it varies from 6.2 to 45 min depending on the relative positions of Earth and Mars in their orbits.

References

  1. D. L. Akin, M. L. Minsky, E. D. Thiel and C. R. Curtzman, “Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS) phase II,” NASA-CR-3734 - 3736, 1983.

    Google Scholar 

  2. P. Laryssa, E. Lindsay, O. Layi, O. Marius, K. Nara, L. Aris, T. Ed, “International Space Station Robotics: A Comparative Study of ERA, JEMRMS and MSS”, Proc. 7th ESA Workshop on Advanced Space Technologies for Robotics and Automation, ASTRA 2002, ESTEC, Noordwijk, The Netherlands, Nov. 2002.

    Google Scholar 

  3. Hirzinger, G., Brunner, B., Dietrich, J., Heindl, J., “Sensor-based Space Robotics-ROTEX and its Telerobotic Features,” IEEE Trans. on Robotics and Automation, Vol. 9, No. 5, pp.649–663, 1993.

    Google Scholar 

  4. Preusche, C., Reintsema, D., Landzettel, K., Hirzinger, G., “Robotics Component Verification on ISS ROKVISS - Preliminary Results for Telepresence,” Proc. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4595 – 4601, 9-15 Oct. 2006

    Google Scholar 

  5. M. Oda et al, “ETS-VII, Space Robot In-Orbit Experiment Satellite,” Proc. 1996 IEEE Int. Conf. on Robotics and Automation, pp.739–744, 1996.

    Google Scholar 

  6. K. Yoshida, “Engineering Test Satellite VII Flight Experiments For Space Robot Dynamics and Control: Theories on Laboratory Test Beds Ten Years Ago, Now in Orbit,” International Journal of Robotics Research, Vol. 22, No. 5, pp. 321–335, 2003.

    Google Scholar 

  7. Robert B. Friend, “Orbital Express Program Summary And Mission Overview,” Sensors and Systems for Space Applications II, Proc. of SPIE Vol. 6958, 695803, (2008)

    Google Scholar 

  8. Diftler, M.A., Mehling, J.S., Abdallah, M.E., Radford, N.A., Bridgwater, L.B., Sanders, A.M., Askew, R.S., Linn, D.M., Yamokoski, J.D., Permenter, F.A., Hargrave, B.K., Piatt, R., Savely, R.T., Ambrose, R.O., “Robonaut 2 - The first humanoid robot in space,” Proc. 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 2178–2183, 9-13 May 2011

    Google Scholar 

  9. “Lunokhod 1 Mobile Lunar Laboratory, USSR” published by the Joint Publications Research Service (JPRS identification number 54525.), US Department of Commerce, a translation of a Russian language monograph: Peredvizhnaya Laboratoriya na Lune Lunokhod-1, responsible Editor Academican A. P. Vinogradov, Moscow, 4 June 1971, 128 pages.

    Google Scholar 

  10. Mishkin, A., Sojourner: An Insider’s View of the Mars Pathfinder Mission, Berkley Books, 2004, ISBN 0-425-19199-0

    Google Scholar 

  11. Maimone M., Yang Cheng Y., Matthies L., “Two years of Visual Odometry on the Mars Exploration Rovers,” Journal of Field Robotics, Vol. 24, No. 3, pp. 169186, 2007.

    Google Scholar 

  12. Mars Exploration Rovers Mission Homepage; http://marsrover.nasa.gov/home/ (as of August 2012)

  13. Mars Science Laboratory Curiosity Rover Homepage; http://mars.jpl.nasa.gov/msl/ (as of August 2012)

  14. Kuninaka, H. and Kawaguchi, J., “Lessons learned from round trip of Hayabusa asteroid explorer in deep space,” Proc. 2011 IEEE Aerospace Conference, pp. 1-8, 5-12 March 2011

    Google Scholar 

  15. Hajime Yano, T. Kubota, H. Miyamoto, T. Okada, D. Scheeres, Y. Takagi, K. Yoshida, M. Abe, S. Abe, O. Barnouin-Jha, A. Fujiwara, S. Hasegawa, T. Hashimoto, M. Ishiguro, M. Kato, J. Kawaguchi, T. Mukai, J. Saito, S. Sasaki and M. Yoshikawa, “Touchdown of the Hayabusa Spacecraft at the Muses Sea on Itokawa,” Science, Vol. 312, no. 5778, pp. 1350-1353, 2 June 2006

    Google Scholar 

  16. K. Yoshida, T. Kubota, S. Sawai, A. Fujiwara, M. Uo, “MUSES-C Touch-down Simulation on the Ground,” AAS/AIAA Space Flight Mechanics Meeting, Paper AAS 01-135, Santa Barbara, California, pp. 1–10, February 2001.

    Google Scholar 

  17. T. Nakamura, T. Noguchi, M. Tanaka, M. E. Zolensky, M. Kimura, A. Tsuchiyama, A. Nakato, T. Ogami, H. Ishida, M. Uesugi, T. Yada, K. Shirai, A. Fujimura, R. Okazaki, S. A. Sandford, Y. Ishibashi, M. Abe, T. Okada, M. Ueno, T. Mukai, M. Yoshikawa, J. Kawaguchi, “Itokawa Dust Particles: A Direct Link Between S-Type Asteroids and Ordinary Chondrites,” Science, Vol. 333, no. 6046, pp. 1113-1116, 26 August 2011

    Google Scholar 

  18. W. Book, “Structural flexibility of motion systems in the space environment,” IEEE Transactions on Robotics and Automation, vol. 9, no. 5, pp. 524–530, 1993.

    Google Scholar 

  19. S. Cetinkunt and W. Book, “Transfer Functions of Flexible Beams and Implications of Flexibility on Controller Performance,” in Teleoperation and Robotics in Space (S. B. Skaar and C. F. Ruoff, eds.), pp. 291–313, AIAA, 1994.

    Google Scholar 

  20. S. Ulrich, J. Z. Sasiadek, and I. Barkana, “Modeling and Direct Adaptive Control of a Flexible-Joint Manipulator,” Journal of Guidance, Control, and Dynamics, vol. 35, pp. 25–39, Jan. 2012.

    Google Scholar 

  21. W. J. Book, O. Maizza-Neto, and D. E. Whitney, “Feedback Control of Two Beam, Two Joint Systems With Distributed Flexibility,” Journal of Dynamic Systems, Measurement, and Control, vol. 97, no. 4, p. 424, 1975.

    Google Scholar 

  22. Y. Chen and L. Meirovitch, “Control of a flexible space robot executing a docking maneuver,” Journal of Guidance, Control, and Dynamics, vol. 18, pp. 756–766, July 1995.

    Google Scholar 

  23. L. Meirovitch and T. Stemple, “Hybrid equations of motion for flexible multibody systems using quasicoordinates,” Journal of Guidance, Control, and Dynamics, vol. 18, pp. 678–688, July 1995.

    Google Scholar 

  24. R. Masoudi and M. Mahzoon, “Maneuvering and Vibrations Control of a Free-Floating Space Robot with Flexible Arms,” Journal of Dynamic Systems, Measurement, and Control, vol. 133, no. 5, 2011.

    Google Scholar 

  25. S. H. Lee and W. J. Book, “Robot Vibration Control Using Inertial Damping Forces,” in VIII CISM-IFToMM Symposium on the Theory and Practice of Robots and Manipulators (Ro. Man. Sy. ‘90), (Cracow, Poland), pp. 252–259, 1990.

    Google Scholar 

  26. R. Lindberg, R. Longman, and M. Zedd, “Kinematic Dynamic Properties of an Elbow Manipulator Mounted on a Satellite,” in Space Robotics: Dynamics and Control (Y. Xu and T. Kanade, eds.), pp. 126, Boston MA: Kluwer Academic Pubs., 1993.

    Google Scholar 

  27. D. Nenchev, Y. Umetani, and K. Yoshida, “Analysis of a redundant free-flying spacecraft/manipulator system,” IEEE Transactions on Robotics and Automation, vol. 8, no. 1, pp. 16, 1992.

    Google Scholar 

  28. R. Featherstone, Rigid Body Dynamics Algorithms. Boston, MA: Springer US, 2008.

    Google Scholar 

  29. D. Nenchev, K. Yoshida, P. Vichitkulsawat, and M. Uchiyama, “Reaction null-space control of flexible structure mounted manipulator systems,” IEEE Transactions on Robotics and Automation, vol. 15, no. 6, pp. 1011–1023, 1999.

    Google Scholar 

  30. Z. Vafa and S. Dubowsky, “On the dynamics of manipulators in space using the virtual manipulator approach,” in Proceedings. 1987 IEEE International Conference on Robotics and Automation, vol. 4, pp. 579–585, Institute of Electrical and Electronics Engineers, 1987.

    Google Scholar 

  31. Y. Umetani and K. Yoshida, “Resolved motion rate control of space manipulators with generalized Jacobian matrix,” IEEE Transactions on Robotics and Automation, vol. 5, pp. 303–314, June 1989.

    Google Scholar 

  32. Y. Masutani, F. Miyazaki, and S. Arimoto, “Modeling and sensory feedback control for space manipulators,” in NASA Conf. Space Telerobotics, 1989.

    Google Scholar 

  33. K. Yoshida, “Impact dynamics representation and control with Extended Inversed Inertia Tensor for space manipulators,” in Robotics Research: The 6th International Symposium (R. Paul and T. Kanade, eds.), pp. 453–463, The International Foundation for Robotics Research, 1994.

    Google Scholar 

  34. K. Yoshida, R. Kurazume, and Y. Umetani, “Dual arm coordination in space free-flying robot,” in Proceedings. 1991 IEEE International Conference on Robotics and Automation, no. April, pp. 2516–2521, IEEE Comput. Soc. Press, 1991.

    Google Scholar 

  35. Y. Yokokohji, T. Toyoshima, and T. Yoshikawa, “Efficient computational algorithms for trajectory control of free-flying space robots with multiple arms,” IEEE Transactions on Robotics and Automation, vol. 9, no. 5, pp. 571–580, 1993.

    Google Scholar 

  36. E. Papadopoulos and S. A. a. Moosavian, “Dynamics and control of space free-flyers with multiple manipulators,” Advanced Robotics, vol. 9, pp. 603–624, Jan. 1994.

    Google Scholar 

  37. S. K. Agrawal and S. Shirumalla, “Planning motions of a dual-arm free-floating manipulator keeping the base inertially fixed,” Mechanism and Machine Theory, vol. 30, pp. 5970, Jan. 1995.

    Google Scholar 

  38. B. Siciliano and O. Khatib, eds., Springer Handbook of Robotics. No. D, Berlin, Heidelberg: Springer Verlag, 2008.

    Google Scholar 

  39. Y. Nakamura and R. Mukherjee, “Nonholonomic path planning of space robots via a bidirectional approach,” IEEE Transactions on Robotics and Automation, vol. 7, no. 4, pp. 500–514, 1991.

    Google Scholar 

  40. W. R. Doggett, W. C. Messner, and J.-N. Juang, “Global minimization of robot base reaction forces during point to point moves,” in AIAA Guidance, Navigation and Control Conference, (San Diego, California), pp. AIAA Paper 96-3896, 1996.

    Google Scholar 

  41. K. Yoshida, H. Nakanishi, H. Ueno, N. Inaba, T. Nishimaki, and M. Oda, “Dynamics, control and impedance matching for robotic capture of a non-cooperative satellite,” Advanced Robotics, vol. 18, pp. 175–198, Jan. 2004.

    Google Scholar 

  42. N. Hogan, “Impedance Control: An Approach to Manipulation: Part I-Theory,” Journal of Dynamic Systems, Measurement, and Control, vol. 107, no. 1, p. 1, 1985.

    Google Scholar 

  43. S. A. A. Moosavian, E. Papadopoulos, and R. Rastegari, “Multiple Impedance Control for Space Free-Flying Robots,” Journal of Guidance, Control, and Dynamics, vol. 28, pp. 939–947, Sept. 2005.

    Google Scholar 

  44. D. Nenchev and K. Yoshida, “Impact analysis and post-impact motion control issues of a free-floating Space robot subject to a force impulse,” IEEE Transactions on Robotics and Automation, vol. 15, pp. 548–557, June 1999.

    Google Scholar 

  45. D. Dimitrov and K. Yoshida, “Utilization of the bias momentum approach for capturing a tumbling satellite,” 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), vol. 4, pp. 3333–3338, 2004.

    Google Scholar 

  46. Muir, P., and Neuman, C., “Kinematic modeling of wheeled mobile robots,” Technical Report, CMU-RI-TR-86-12, Robotics Institute, Carnegie Mellon University, June, 1986.

    Google Scholar 

  47. Alexander, J. C., and Maddocks, J.H., “On the kinematics of wheeled mobile robot,” International Journal of Robotics Research, Vol. 8, No. 5, 1989, pp.15–27.

    Google Scholar 

  48. Fierro, R., and Lewis, F. L., “Control of a Nonholonomic Mobile Robot: Backstepping Kinematics into Dynamics,” Proceedings of the 34th IEEE Conference on Decision and Control, New Orleans, LA, 1995, pp.3805–3810.

    Google Scholar 

  49. Tarokh, M., and McDermott, G. J., “Kinematics Modeling and Analyses of Articulated Rovers,” IEEE Transactions on Robotics, Vol. 21, No. 4, 2005, pp. 539–553.

    Google Scholar 

  50. Chakraborty, N., and Ghosal, A., “Kinematics of Wheeled Mobile Robot on Uneven Terrain,” Mechanism and Machine Theory, Vol. 39, Issue 12, 2004, pp. 1273–1287

    Google Scholar 

  51. Grand, C., Benamar, Faiz., and Plumet, F., “Motion Kinematics Analysis of Wheeled-Legged Rover over 3D Surface with Posture Adaptation,” Mechanism and Machine Theory, Vol. 45, Issue 3, 2010, pp. 477–495.

    Google Scholar 

  52. Jain, A., Balaram, J., Cameron, J., Guineau, J., Lim, C., Pornerantz, M., and Sohl, G., “Recent Developments in the ROAMS Planetary Rover Simulation Environment,” Proceedings of the 2004 IEEE Aerospace Conference, Big Sky, MT, 2004, pp. 861–876.

    Google Scholar 

  53. Bauer, R., Leung, W., and Barfoot, T., “Development of a Dynamic Simulation Tool for the Exomars Rover,” Proceedings of the 8th International. Symposium on Artificial Intelligence, Robotics and Automation in Space, Munich, Germany, 2005.

    Google Scholar 

  54. Gibbesch, A., and Schäfer, B., “Multibody system modelling and simulation of planetary rover mobility on soft terrain,” Proceedings of the 8th International. Symposium on Artificial Intelligence, Robotics and Automation in Space, Munich, Germany, 2005.

    Google Scholar 

  55. Krenn, R., Gibbesch, A., and Hirzinger, G., “Contact Dynamics Simulation of Rover Locomotion,” Proceedings of the 9th International. Symposium on Artificial Intelligence, Robotics and Automation in Space, Los Angeles, CA, 2007.

    Google Scholar 

  56. Bickler, D., “Articulated suspension system,” US Patent 4840394,1988.

    Google Scholar 

  57. Volpe, R., Balaram, J., Ohm, T., and Ivlev, R., “Rocky 7: A Next Generation Mars Rover Prototype,” Advanced Robotics, Vol. 11, No. 4, 1997, pp. 341–358.

    Google Scholar 

  58. Harrington, B. D., and Voorhees. C., “The Challenges of Designing the Rocker-Bogie Suspension for the Mars Exploration Rover,” NASA Technical Documents, 20040084284, Nov., 2005.

    Google Scholar 

  59. Iagnemma, K., and Dubowsky, S., “Mobile Robots in Rough Terrain: Estimation, Motion Planning, and Control with application to Planetary Rovers,” Springer Tracts in Advanced Robotics (STAR) Series, Vol. 12, Springer, 2004.

    Google Scholar 

  60. Ishigami, G., Nagatani, K., and Yoshida, K., “Slope Traversal Controls for Planetary Exploration Rover on Sandy Terrain,” Journal of Field Robotics, Vol. 26, Issue 3, pp. 264–286, 2009.

    Google Scholar 

  61. Coulter, R. Craig, “Implementation of the Pure Pursuit Path Tracking Algorithm,” CMU-RI-TR-92-01, 1992.

    Google Scholar 

  62. Helmick, D. M., Roumeliotis, S. I., Cheng, Y., Clouse, D. S., Bajracharya, M., and Matthies, L. H., “ Slip Compensated Path Following for Planetary Exploration Rovers,” Advanced Robotics, Vol. 20, pp. 1257–1280, 2006.

    Google Scholar 

  63. Ishigami, G., Miwa, A., Nagatani, K., and Yoshida, K., “Terramechanics-Based Model for Steering Maneuver of Planetary Exploration Rovers on Loose Soil,” Journal of Field Robotics, Vol. 24, Issue 3, 2007, pp. 233–250.

    Google Scholar 

  64. “Mars Science Laboratory Fact Sheet”. NASA/JPL. Retrieved Oct. 16th, 2012.

    Google Scholar 

  65. Bekker, M. G., “Theory of Land Locomotion,” Ann Arbor, MI, University of Michigan Press, 1956.

    Google Scholar 

  66. Bekker, M. G., “Introduction to Terrain-Vehicle Systems,” Ann Arbor, MI, University of Michigan Press, 1969.

    Google Scholar 

  67. Wong, J.Y., “Theory of Ground Vehicles,” 4th edn., Wiley, New York, 2008.

    Google Scholar 

  68. Wong, J.Y., and Reece A.R., “Prediction of Rigid Wheel Performance based on the Analysis of Soil-Wheel Stresses Part I, Performance of Driven Rigid Wheels,” Journal of Terramechanics, Vol. 4, No. 1, 1967, pp. 81–98.

    Google Scholar 

  69. Wong, J.Y., and Reece A.R., “Prediction of Rigid Wheel Performance based on the Analysis of Soil-Wheel Stresses Part II, Performance of Towed Rigid Wheels,” Journal of Terramechanics, Vol. 4, No. 2, 1967, pp. 7–25.

    Google Scholar 

  70. Schmid, I. C., “Interaction of Vehicle and Terrain Results from 10 Years Research at IKK,” Journal of Terramechanics, Vol. 32, No. 1, 1995, pp. 3–25.

    Google Scholar 

  71. Ding, L., Deng, Z., Gao, H., Nagatani, K., and Yoshida, K., “Planetary rovers’ wheel-soil interaction mechanics: new challenges and applications for wheeled mobile robots,” Intelligent Service Robotics, Vol. 4 Issue 1, Springer-Verlag New York, December, 2010, pp. 17–38.

    Google Scholar 

  72. Nakashima, H., Fujii, H., Oida, A., Momozu, M., Kawase, Y., Kanamori, H., Aoki, S., and Yokoyama, T., “Parametric analysis of lugged wheel performance for a lunar microrover by means of DEM,” Journal of Terramechanics, Vol. 44, 2007, pp. 153–162.

    Google Scholar 

  73. Nakashima, H., Fujii, H., Oida, A., Momozu, M., Kanamori, H., Aoki, S., Yokoyama, T., Shimizu, H., Miyasaka, J., and Ohdoi, K., “Discrete element method analysis of single wheel performance for a small lunar rover on sloped terrain,” Journal of Terramechanics, Vol. 47, 2010, pp. 307–321, 2010.

    Google Scholar 

  74. Li, W., Huang, Y., Cui, Y., Dong, S., and Wang, J., “Trafficability analysis of lunar mare terrain by means of the discrete element method for wheeled rover locomotion,” Journal of Terramechanics, Vol. 47, 2010, pp. 161–172.

    Google Scholar 

  75. Wakabayashi,S., Sato, H., and Nishida, S., “Design and mobility evaluation of tracked lunar vehicle,” Journal of Terramechanics, Vol. 46, Issue, 3, 2009, pp. 105–114.

    Google Scholar 

  76. Patel, N., Slade, R., and Clemmet, Jim., “The ExoMars rover locomotion subsystem,” Journal of Terramechanics, Vol. 47, 2010, pp. 227–242.

    Google Scholar 

  77. Lindemann, R., Bickler, D., Harrington, B., Ortiz, G., and Voorhees, C., “Mars Exploration Rover Mobility Development,” IEEE Robotics and Automation Magazine, Vol.13, Issue 2, June, 2006, pp. 19–26.

    Google Scholar 

  78. Ishigami, G., Miwa, A., Nagatani, K., and Yoshida, K., “Terramechanics-Based Analysis on Slope Traversability for a Planetary Exploration Rover,” Proceedings of the 25th International Symposium on Space Technology and Science, 2006, pp. 1025–1030.

    Google Scholar 

  79. Michaud, S., Richter, L., Thueer, T., Gibbesch, A., Huelsing, T., Schmitz, N., Weiss, S., Krebs, A., Patel, N., Joudrier, L., Siegwart, R., Schäfer, B., and Ellery, A., “Rover Chassis Evaluation and Design Optimisation using the RCET,” Proceedings of the 9th ESA Workshop on ASTRA, 2006.

    Google Scholar 

  80. Iagnemma, K., Senatore, C., Trease, B., Arvidson, R., Shaw, A., Zhou, F., Van Dyke, L, and Lindemann, R., “Terramechanics Modeling of Mars Surface Exploration Rovers for Simulation and Parameter Estimation,” Proceedings of the ASME International Design Engineering Technical Conference, 2011.

    Google Scholar 

  81. Onafeko, O., and Reece A.R., “Soil Stresses and Deformations beneath Rigid Wheels,” Journal of Terramechanics, Vol. 4, No. 1, 1967, pp. 59–80.

    Google Scholar 

  82. Janosi, Z., and Hanamoto, B., “Analytical determination of drawbar pull as a function of slip for tracked vehicle in deformable soils,” Proceedings of the 1st ISTVS Conference, Torino, Turin, Italy, 1961, pp. 707–726.

    Google Scholar 

  83. Iagnemma, K., “A Laboratory Single Wheel Testbed for studying planetary rover wheel-terrain interaction,” Massachusetts Institute of Technology Technical Report, 01-05-05, 2005.

    Google Scholar 

  84. Nagatani, K., Ikeda, A., Sato, K., and Yoshida, K., “Accurate Estimation of Drawbar Pull of Wheeled Mobile Robots Traversing Sandy Terrain Using Built-in Force Sensor Array Wheel,” Proceedings of the 2009 IEEE/RSJ International Conference on Robots and Systems, St. Loius, MO, 2009, pp. 2373–2378

    Google Scholar 

  85. Meirion-Griffith, G., and Spenko, M., “A Modified Pressure-sinkage Model for Small, Rigid Wheels on Deformable Terrains,” Journal of Terramechanics, Vol. 48, Issue 2, 2011, pp. 149–155.

    Google Scholar 

  86. Senatore, C., and Iagnemma, K., “Direct shear behaviour of dry, granular soils for low normal stress with application to lightweight robotic vehicle modeling,” Proceedings of the 17th ISTVS Conference, Blacksburg, VA, 2011.

    Google Scholar 

  87. Matijevic J., Crisp J., Bickler D., Banes R., Cooper B., Eisen H., Gensler J., Haldemann A., Hartman F., Jewett K., Matthies L., Laubach S., Mishkin A., Morrison J., Nguyen T., Sirota A., Stone H., Stride S., Sword L., Tarsala J., Thompson A., Wallace M., Welch R., Wellman E., Wilcox B., Foerguson D., Jenkins P., Kolecki J., Landis G., and Wilt D., “Characterization of Martian surface deposits by the Mars pathfinder rover, Sojourner,” Science, Vol. 278, No. 5, 1997, pp. 1765–1768.

    Google Scholar 

  88. Iagnemma K., Kang S., Shibly H., and Dubowsky S., “Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers,” IEEE Transactions on Robotics, Vol. 20, No. 5, 2004, pp. 921–927.

    Google Scholar 

  89. Hutangkabodee S., Zweiri Y., Seneviratne L., and Althoefer K., “Soil parameter identification for wheel-terrain interaction dynamics and traversability prediction,” International Journal of Automation and Computing, Vol. 3, No. 3, 2006, pp. 244–251.

    Google Scholar 

  90. Helmick D., Angelova A., Matthies L., Brooks C., Halatci I., Dubowsky S., and Iagnemma K., “Experimental results from a terrain adaptive navigation system for planetary rovers,” Proceedings of 9th International Symposium on Artificial Intelligence, Robotics and Automation in Space, i-SAIRAS, Hollywood, CA, 2008, No. 110.

    Google Scholar 

  91. Ishigami, G., Kewlani, G., and Iagnemma, K., “A Statistical Approach to Mobility Prediction for Planetary Surface Exploration Rovers in Uncertain Terrain,” IEEE Robotics and Automation Magazine, Vol.16, Issue 4, December, 2009, pp. 61–70.

    Google Scholar 

  92. Matthies, L., “Stereo Vision for Planetary Rovers: Stochastic Modeling to Near Real-Time Implementation,” International Journal of Computer Vision, Vol. 8, No. 1, 1992 pp. 71–91.

    Google Scholar 

  93. Golberg. S., Maimone. M., and Matthies. L., “Stereo Vision and Rover Navigation Software for Planetary Exploration,” Proceedings of the 2002 IEEE Aerospace Conference, Big Sky, MT, 2002, pp. 5-2025–5-2036.

    Google Scholar 

  94. Maimone. M., Johnson. A., Cheng. Y., Willson, R., and Matthies, L., “Autonomous Navigation Results from the Mars Exploration Rover (MER) Mission,” 9th International Symposium on Experimental Robotics, Singapore. 2004.

    Google Scholar 

  95. Li, R., Squyres, S., Arvidson, R., Archinal, B., Bell, J., Cheng, Y., Crumpler, L., Marais, D., Di, K., Ely, T., Golombek, M., Graat, E., Grant, J., Guinn, J., Johnson, A., Greeley, R., Kirk, R., Maimone, M., Matthies, L., Malin, M., Parker, T., Sims, M., Soderblom, L., Thompson, S., Wang, J., Whelley, P., and Xu, F., “Initial results of rover localization and topographic mapping for the 2003 Mars exploration rover mission,” Photogrammetric Engineering & Remote Sensing (Special Issue on Mapping Mars), Vol. 71, No. 10, 2005, pp. 1129–1142.

    Google Scholar 

  96. Matthies, L., Maimone, M., Johnson, A., Cheng, Y., Willson, R., Villalpando, C., Goldberg, S., Huertas, A., Stein, A., and Angelova, A., “Computer Vision on Mars,” International Journal of Computer Vision, Vol. 75, No. 1, 2007, pp. 67–92.

    Google Scholar 

  97. Wulf. O., and Wagner, B., “Fast 3D Scanning Methods for Laser Measurement Systems,” Proceedings of the International Conference on Control Systems and Computer Science, Bucharest, Romania, 2003, pp. 312–317.

    Google Scholar 

  98. Thrun. S., Thayer. S., Whittaker. W., Baker, C., Burgard, W., Ferguson, D., Hahnel, D., Montemerlo, M., Morris, A., Omohundro, Z., Reverte, C., and Whittaker, W., “Autonomous Exploration and Mapping of Abandoned Mines,” IEEE Robotics and Automation Magazine, Vol.11, No.4, 2004, pp. 79–91.

    Google Scholar 

  99. Buehler. M., Iagnemma. K., and Singh. S., (eds.) “The 2005 DARPA Grand Challenge: The Great Robot Race,” Springer Tracts in Advanced Robotics (STAR) Series, Vol. 36, Springer-Verlag Berlin Heidelberg, 2005.

    Google Scholar 

  100. Buehler. M., Iagnemma. K., and Singh. S., (eds.) “The DARPA Urban Challenge: Autonomous Vehicles in City Traffic,” Springer Tracts in Advanced Robotics (STAR) Series, Vol. 56, Springer-Verlag Berlin Heidelberg 2009.

    Google Scholar 

  101. “DragonEye 3D Flash LIDAR Space Camera,” http://www.advancedscientificconcepts.com/products/dragoneye.html, Retrieved Oct. 16th, 2012.

  102. Luu, T., Ruel, S., and Berube, A., “TriDAR Test Results Onboard Final Shuttle Mission, Applications For Future Of Non-Cooperative Autonomous Rendezvous & Docking,” Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space 2012.

    Google Scholar 

  103. Vaskevicius, N., Birk, A., Pathak, K., and Schwertfeger, S., “Efficient Representation in 3D Environment Modeling for Planetary Robotic Exploration”, Advanced Robotics, vol. 24, no. 8–9, pp. 1169–1197, 2010.

    Google Scholar 

  104. Dong, H., and Barfoot. T., “Lighting-Invariant Visual Odometry using Lidar Intensity Imagery and Pose Interpolation,” Proceedings of the 8th International. Conference on Field and Service Robotics, July, 2012.

    Google Scholar 

  105. Bakambu, J., Nimelman, M., Tripp, J., and Kujelev, A., “Compact fast scanning lidar for planetary rover navigation,” Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space 2012.

    Google Scholar 

  106. Angelova, A., Matthies, L., Helmick, D., and Perona, P., “Learning slip behavior using automatic mechanical supervision,” Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Rome, 2007, pp. 1741–1748.

    Google Scholar 

  107. Angelova, A., Matthies, L., Helmick, D., Sibley, G., and Perona, P., “Learning to predict slip for ground robots,” Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, 2006, pp. 3324–3331.

    Google Scholar 

  108. Li, R., Di, K., Matthies, L., Arvidson, R., Folkner, W., Archinal, B., “Rover Localization and Landing Site Mapping Technology for the 2003 Mars Exploration Rover Mission,” Journal of Photogrammetric Engineering and Remote Sensing, Vol. 70, No. 1, 2004, pp. 77–90.

    Google Scholar 

  109. Olson, C., Matthies, L., and Schoppers, M., “Rover Navigation using Stereo Ego-motion,” Robotics and Autonomous Systems, Vol. 43, No. 4, 2003, pp. 215–229.

    Google Scholar 

  110. Maimone, M., Cheng, Y., and Matthies, L., “Two years of visual odometry on the Mars Exploration Rovers,” Journal of Field Robotics, Vol. 24, Issue 3, 2007, pp. 169–186.

    Google Scholar 

  111. Stentz, A., “Optimal and efficient path planning for partially-known environments,” Proceedings of the 1994 IEEE International Conference on Robotics and Automation, San Diego, CA, 1994, pp. 3310-3317.

    Google Scholar 

  112. Barraquand, J., Langlois, B., and Latombe, J., “Numerical potential field techniques for robot path planning,” IEEE Transactions on Systems, Man and Cybernetics, Vol. 22, No. 2, 1992, pp. 224–241.

    Google Scholar 

  113. Kavraki, L., Svestka, P., Latombe, J., and Overmars, M., “Probabilistic roadmaps for path planning in high-dimensional configuration spaces,” IEEE Transactions on Robotics and Automation, Vol. 12, No. 4, 1996, pp. 566-580.

    Google Scholar 

  114. Cheng, P., Shen, Z., and LaValle, S., “RRT-based trajectory design for autonomous automobiles and spacecraft,” Archives of Control Sciences, Vol. 11, No. 3-4, 2001, pp. 167-194.

    Google Scholar 

  115. Donald. B., Xavier. P., Canny, J., and Reif, J., “Kinodynamic motion planning,” Journal of the Association for Computing Machinery, Vol. 40, No. 5, 1993, pp. 1048-1066.

    Google Scholar 

  116. Urmson, C., and Simmons, R., “Approaches for heuristically biasing RRT growth,” Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, 2003, pp. 1178-1183.

    Google Scholar 

  117. Kuwata, Y., Teo, J., Karaman, S., Fiore, G., Frazzoli, E., and How, J., “Real-time Motion Planning with Applications to Autonomous Urban Driving,” IEEE Transaction on Control Systems Technology, Vol. 17, No. 5, 2009, pp. 1105-1118.

    Google Scholar 

  118. Howard, T., and Kelly, A., “Trajectory and Spline Generation for All-Wheel Steering Mobile Robots,” Proceedings of the 2006 IEEE International Conference on Intelligent Robots and Systems, Beijing, China, 2006, pp. 4827-4832.

    Google Scholar 

  119. Howard, A., Seraji, H., and Tunstel, E., “A Rule-Based Fuzzy Traversability Index for Mobile Robot Navigation,” Proceedings of the 2001 IEEE Conference on Robotics and Automation, Seoul, Korea, 2001, pp. 3067-3071.

    Google Scholar 

  120. Singh, S., Simmons, R., Smith, T., Stentz, A., Verma, V., Yahja, A., and Schwehr, K., “Recent Progress in Local and Global Traversability for Planetary Rovers,” Proceedings of the 2000 IEEE Conference on Robotics and Automation, San Francisco, CA, 2000, pp. 1194-1200.

    Google Scholar 

  121. Ishigami, G., Nagatani, K., and Yoshida, K., “Path Planning and Evaluation for Planetary Rovers Based on Dynamic Mobility Index,” Proceedings of the IEEE International Conference on Robots and Systems, San Francisco, CA, 2011, pp. 601–606 .

    Google Scholar 

  122. Biesiadecki, J., and Maimone, M., “The Mars Exploration Rover surface mobility flight software: Driving ambition,” Proceedings of the 2006 IEEE Aerospace Conference, Big Sky, MT, 2006.

    Google Scholar 

  123. Carsten, J., Rankin, A., Ferguson, D., Stentz, A., “Global Path Planning on Board the Mars Exploration Rovers,” Proceedings of the 2007 IEEE Aerospace Conference, 2007, pp. 1–11.

    Google Scholar 

  124. Carsten, J., Rankin, A., Ferguson, D., Stentz, A., “Global planning on the Mars Exploration Rovers: Software integration and surface testing,” Journal of Field Robotics, Vol. 26, Issue 4, 2008, pp. 337–357.

    Google Scholar 

  125. Kelly, A., Stentz, A., Amidi, O., Bode, M., Bradley, D., Diaz-Calderon, A., Happold, M., Herman, H., Mandelbaum, R., Pilarski, T., Rander, P., Thayer, S., Vallidis, N., and Warner, R., “Toward reliable off road autonomous vehicles operating in challenging environments,” International Journal of Robotics Research, Vo. 25, No. 5-6, 2006, pp.449–483.

    Google Scholar 

  126. Ishigami, G., Otsuki, M., and Kubota, T., “Path Planning and Navigation Framework for a Planetary Exploration Rover using a Laser Range Finder,” Proceedings of the 8th International. Conference on Field and Service Robotics, July, 2012.

    Google Scholar 

  127. W. R. Ferrel, “Remote Manipulation with Transmission Delay,” IEEE Trans. on Human Factors in Electronics, HFE-6, No. 1, pp. 24–32, 1965.

    Google Scholar 

  128. M. V. Noyes and T. B. Sheridan, “A Novel Predictor for Telemanipulation through a Time Delay,” Proc. of Annual Conf. on Manual Control.

    Google Scholar 

  129. G. Hirzinger, B. Brunner, J. Dictrich and J. Heindl, “Sensor-Based Space Robotics-ROTEX and Its Telerobotic Features,” IEEE Trans. on Robotics and Automation, Vol. 9, No. 5, pp. 649–663, 1993.

    Google Scholar 

  130. M. Oda and T. Doi, “Teleoperation System of ETS-VII Robot Experiment Satellite,” Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1644–1650, 1997.

    Google Scholar 

  131. R. J. Anderson and M. W. Spong, “Bilateral Control of Teleoperators with Time Delay,” IEEE Trans. on Automatic Control, Vol. 34, No. 5, pp. 494–501, 1989.

    Google Scholar 

  132. W. K. Yoon, T. Goshozono, H. Kawabe, M. Kinami, Y. Tsumaki, M. Uchiyama, M. Oda, T. Doi, “Model-Based Teleoperation of ETS-VII Manipulator, “ IEEE Trans. on Robotics and Automation, Vol. 20, No. 3, pp. 602–612, 2004.

    Google Scholar 

  133. T. Imaida, Y. Yokokohji, T. Doi, M. Oda, T. Yoshikawa, “Ground-space bilateral teleoperation of ETS-VII robot arm by direct bilateral coupling under 7-s time delay condition,” IEEE Trans. on Robotics and Automation, Vol. 20, No. 3, pp. 499–511, 2004.

    Google Scholar 

  134. G. Hirzinger, K. Landzettel, D. Reinsema, C. Preusche, A. Albu-Schaffer, B. Rebele, M. Turk, “ROKVISS-Robotics Component Verification on ISS,” i-SAIRAS2005, 2005.

    Google Scholar 

  135. W. R. Ferrel and T. B. Sheridan, “Supervisory Control of Remote Manipulation,” IEEE Spectrum, Vol. 4, No. 10, pp. 81–88, 1967.

    Google Scholar 

  136. T. B. Sheridan, “Telerobotics, Automation, and Human Supervisory Control,” The MIT Press.

    Google Scholar 

  137. A. K. Bejczy, W. S. Kim, S. C. Venema, “The phantom robot: predictive displays for teleoperation with time delay,” 1990 IEEE Int. Conf. on Robotics and Automation, pp. 546–551, 1990.

    Google Scholar 

  138. E. Freund and J. Rossmann, “Projective virtual reality: bridging the gap between virtual reality and robotics,” IEEE Trans. on Robotics and Automation, Vol. 15, No. 3, pp. 411–422, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuya Yoshida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yoshida, K., Nenchev, D., Ishigami, G., Tsumaki, Y. (2014). Space Robotics. In: Macdonald, M., Badescu, V. (eds) The International Handbook of Space Technology. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41101-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41101-4_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41100-7

  • Online ISBN: 978-3-642-41101-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics