Skip to main content

Attitude and Orbit Control Systems

  • Chapter
  • First Online:
Book cover The International Handbook of Space Technology

Part of the book series: Springer Praxis Books ((ASTROENG))

Abstract

This chapter describes space technology concepts and hardware associated with the spacecraft attitude and orbit control systems (AOCS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The U-D decomposition avoids a problem of numerical stability (round-off error) in Kalman filters when the process noise covariance is small that can lead to a small positive eigenvalue being wrongly computed as a negative, causing the state covariance matrix to be indefinite when it should be positive-definite. The U-D decomposition, \( {\mathbf{P}} = {\mathbf{U}}\cdot{\mathbf{D}}\cdot{\mathbf{U}}^{\text{T}} \), where \( {\mathbf{U}} \) is a unit triangular matrix (with unit diagonal), and \( {\mathbf{D}} \) is a diagonal matrix, avoids some of the square root operations required by alternative methods, while maintaining their desirable properties.

References

  1. Wertz, J. R. (ed.), Spacecraft Attitude Determination and Control, Kluwer Academic Publishers, The Netherlands, 1978.

    Google Scholar 

  2. Leondes, C. T. (ed.), Guidance and Control of Aerospace Vehicles, McGraw-Hill, 1963.

    Google Scholar 

  3. Bryson, A.E., Control of Spacecraft and Aircraft, Princeton University Press, Princeton, NJ, 1994.

    Google Scholar 

  4. Sidi, M. J., Spacecraft Dynamics and Control: A Practical Engineering Approach, Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  5. Wie, B., Space Vehicle Dynamics and Control, American Institute of Aeronautics and Astronautics, Second Edition, Restone, VA, 2008.

    Google Scholar 

  6. Pisacane, V. L. (ed.), Fundamentals of Space Systems, Oxford University Press, 2nd Edition, 2005, Chapter 5.

    Google Scholar 

  7. Fortescue, P., Swinerd, G., and Stark, J. (eds.), Spacecraft Systems Engineering, 4th Edition, John Wiley & Sons, 2011, Chapter 9.

    Google Scholar 

  8. Wertz, J. R., Everett, D. F., and Puschell, J. J. (eds.), Space Mission Engineering: The New SMAD, Microcosm Press, Hawthorne, CA, 2011, Chapter 19.

    Google Scholar 

  9. Wahba, G., “A Least-Squares Estimate of Satellite Attitude,” SIAM Review, Vol. 7, No. 3, July 1965, p. 409.

    Google Scholar 

  10. Black, H. D., “A Passive System for Determining the Attitude of a Satellite,” AIAA Journal, Vol. 2, No. 7, 1964, pp. 1350-1351.

    Google Scholar 

  11. Keat, J., “Analysis of Least Squares Attitude Determination Routine DOAOP,” Computer Sciences Corp., CSC/TM-77/6034, Silver Spring, MD, Feb. 1977.

    Google Scholar 

  12. Shuster, M. D. and Oh, S. D., “Three-Axis Attitude Determination from Vector Observations,” Journal of Guidance, Control, and Dynamics, Vol. 4, No. 1, 1981, pp. 70-77.

    Google Scholar 

  13. Markley, F. L., “Attitude Determination Using Vector Observations and the Singular Value Decomposition,” Journal of the Astronautical Sciences, Vol. 36. No. 3, 1988, pp. 245-258.

    Google Scholar 

  14. Shuster, M. D., “A Simple Kalman Filter and Smoother for Spacecraft Attitude,” Journal of the Astronautical Sciences, Vol. 37. No. 1, 1989, pp. 89-106.

    Google Scholar 

  15. Bar-Itzhack, I. Y., “REQUEST: A Recursive QUEST Algorithm for Sequential Attitude Determination,” Journal of Guidance, Control, and Dynamics, Vol. 19, No. 5, 1996, pp. 1034-1038.

    Google Scholar 

  16. Choukroun, D., Bar-Itzhack, I. Y., and Oshman, Y., “Optimal-REQUEST Algorithm for Attitude Determination,” Journal of Guidance, Control, and Dynamics, Vol. 27, No. 3, 2004, pp. 418-425.

    Google Scholar 

  17. Lefferts, E. G., Markley, F. L., and Shuster, M. D., “Kalman Filtering for Spacecraft Attitude Estimation,” Journal of Guidance, Control, and Dynamics, Vol. 5, No. 5, 1982, pp. 417-429.

    Google Scholar 

  18. Crassidis, J. L. and Markley, F. L., “Unscented Filtering for Spacecraft Attitude Estimation,” Journal of Guidance, Control, and Dynamics, Vol. 26, No. 4, 2003, pp. 536-542.

    Google Scholar 

  19. Crassidis, J. L. and Junkins, J. L., Optimal Estimation of Dynamic Systems, Chapman & Hall/CRC, Boca Raton, FL, 2004.

    Google Scholar 

  20. Crassidis, J. L., Markley, F. L., and Cheng, Y., “Survey of Nonlinear Attitude Estimation Methods,” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 1, 2007, pp. 12-28.

    Google Scholar 

  21. Bryson, A. E., Applied Linear Optimal Control, Cambridge University Press, 2002.

    Google Scholar 

  22. Bryson, A. E. and Ho, Y-C, Applied Optimal Control, John Wiley & Sons, 1975.

    Google Scholar 

  23. M.S. Hodgart “Gravity Gradient and Magnetorquing Attitude Control for Low Cost Low Earth Orbit Satellites- the UoSAT Experience”, Ph.D. Submission at University of Surrey, June 1989

    Google Scholar 

  24. Brady, T., Tillier, C., Brown, R., Jimenez, A., and Kourepenis, A., “The Inertial Stellar Compass: A New Direction in Spacecraft Attitude Determination,” SSC02-II-1, 16th Annual USU Conference on Small Satellites, 2002.

    Google Scholar 

  25. EADS Sodern Horizon Sensor, http://www.sodern.com/site/FO/scripts/siteFO_contenu.php?mode=&noeu_id=61&lang=EN, [Accessed 29 March 2011].

  26. SELEX Galileo Horizon Sensor, http://www.selex-sas.com/EN/Common/files/SELEX_Galileo/Products/IRES_NE.pdf, [Accessed 29 March 2011].

  27. Van Bezooijen, R.W.H, A Star Pattern Recognition Algorithm for Autonomous Attitude Determination, IFAC Automatic Control in Aerospace, Japan, 1989

    Google Scholar 

  28. Steyn, WH, A Multi-mode Attitude Determination and Control System for Small Satellites, PhD Thesis, Stellenbosch, 1995

    Google Scholar 

  29. Lightsey, G.E., “Spacecraft Attitude Control Using GPS Carrier Phase”, Global Positioning System: Theory and Application, Parkinson, B.W. and Spilker, J.J. (ed), Vol. II, 1996.

    Google Scholar 

  30. Lightsey, G.E., Cohen, C.E., Feess, W.A. and Parkinson, B.W., “Analysis of Spacecraft Attitude Measurement Using On-board GPS”, Advances in the Astronautical Sciences, Vol. 86, 1994.

    Google Scholar 

  31. Lappas, Vaios J (2002) A Control Moment Gyro (CMG) Based Attitude Control System (ACS) For Agile Small Satellites Doctoral thesis, University of Surrey.

    Google Scholar 

  32. Honeywell M50 Data Sheet, http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-documents/M50_Control_Moment_Gyroscope.pdf, Accessed 23 March 2011

  33. Burt, Richard “AAS 03-072 “Failure analysis of International Space Station Control Moment Gyro” 26th Annual AAS Guidance and Control Conference, Breckenridge, Colorado.

    Google Scholar 

  34. http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-documents/M50_Control_Moment_Gyroscope.pdf, Accessed 23 March 2011

  35. Defendini, A., Lagadec, K., Guay, P., Blais, T., Griseri, G., “Low cost CMG-based AOCS designs”, Proc. 4th International Conf. on Spacecraft Guidance, Navigation and Control Systems, pages 393-398, 2000

    Google Scholar 

  36. A. Bradford, “BILSAT-1: A Low Cost, Agile, Earth Observation Microsatellite for Turkey” International Astronautical Federation, October, Houston, USA, 2002

    Google Scholar 

  37. ATV Data Sheet, http://www.astrium.eads.net/en/programme/atv.html, Accessed 23 March 2011

  38. Wertz, J. R., Larson, Space Mission Analysis & Design, Microcosm, Torrance, California, 1999

    Google Scholar 

  39. SSTL Sun Sensor Data Sheet, www.sstl.co.uk/Downloads/Datasheets/Sun-sensor, Accessed 29 March 2011

  40. Bradford Sun Sensor, www.bradford-space.com/pdf/be_datasheet_sun_sep2006.pdf, Accessed 29 March 2011

  41. Berlin, P., Satellite Platform Design, Department of Space Science, University of Lulea, 5th Edition, 2007

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bong Wie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wie, B., Lappas, V., Gil-Fernández, J. (2014). Attitude and Orbit Control Systems. In: Macdonald, M., Badescu, V. (eds) The International Handbook of Space Technology. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41101-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41101-4_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41100-7

  • Online ISBN: 978-3-642-41101-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics